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Abstract

We present solutions of benchmark instances to
the solitaire computer game Atomix found with
different heuristic search methods. The problem
is PSPACE-complete. An implementation of the
heuristic algorithm A* is presented that needs no
priority queue, thereby having very low memory
overhead. The limited memory algorithm IDA* is
handicapped by the fact that, due to move trans-
positions, duplicates appear very frequently in the
problem space; several schemes of using memory to
mitigate this weakness are explored, among those,
“partial” schemes which trade memory savings for
a small probability of not finding an optimal so-
lution. Even though the underlying search graph
is directed, backward search is shown to be viable,
since the branching factor can be proven to be the
same as for forward search.

1 Introduction

Atomix was invented in 1990 by Günter Krämer
and first published by Thalion Software for the pop-
ular computer systems of that time. The goal is to
assemble a given molecule from atoms (see Fig. 1).
The player can select an atom at a time and “push”
it towards one of the four directions north, south,
west, and east; it will keep on moving until it hits

∗Advisors: Henning Fernau, Klaus-Jörn Lange, Rolf Nie-
dermeier (Universität Tübingen)
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Figure 1: A simple Atomix problem (Atomix 01
in the list of the appendix). It can be solved with
the following 13 moves, where the atoms are num-
bered left-to-right in the molecule: 1 down left, 3
left down right up right down left down right, 2
down, 1 right.
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Figure 2: A more complex Atomix problem (level
number 43 from the “katomic” implementation). It
takes at least 66 moves to solve.

an obstacle or another atom. The game is won
when the atoms form the same constellation (the
“molecule”) as depicted beside the board. A con-
crete Atomix problem, given by the original atom
positions and the goal molecule, is called a level of
Atomix.

The original game had a time limit and did not
count the moves needed; we will instead focus on
the analytical aspect and try to minimize the so-
lution length as a goal. Note that we are only in-
terested in optimal solutions; in order to just find
any solution fast, quite different algorithms would
be necessary.

An implementation of this Atomix varia-
tion for the X Window System is available
as “katomic” from http://games.kde.org.
A JavaScript version can be played online at
http://www.sect.mce.hw.ac.uk/~peteri/atomix.

Our solver program written in C++ is able
to solve 17 of the 30 problems from the original
Atomix and 18 of the 67 problems from katomic
optimally. In an appendix, we list a selection of
these findings.

2 Heuristic Search

Many common problems and, especially, most soli-
taire puzzles can be formulated as a state space
search problem: given are a start state, a set of goal

states and a set of operators to transform one state
into another; wanted is a sequence of operators, also
simply called a move sequence, that transforms the
start state into a goal state and that is of minimal
length. A state space can be represented as a graph,
with nodes representing states and (directed) edges
representing moves. That way, well-known graph
algorithms can be applied. To emphasize this as-
pect, states generated in a state space search are
often called “nodes”.

In the general case, each operator is associated
with a cost, and the sum of the costs over the so-
lution sequence is to be minimized. For simplicity,
we will assume unit costs for each operator and talk
about “number of moves” instead of costs.

For hard combinatorial problems, the use of
heuristics can often lead to dramatic improvements
for a state space search. Many problems would
even be unsolvable without them. For a state space
search, “heuristic” has a well-defined meaning: an
estimate of the moves left from the current state to
a goal.

Of special interest are admissible heuristics: they
never overestimate the number of moves. The well-
known algorithms A* and IDA* can be proven to
always find an optimal solution when using an ad-
missible heuristic. An admissible heuristic judges
the “quality” of a state s: if g(s) is the number
of moves already applied, and h(s) is the heuristic
estimate, then f(s) := g(s) + h(s) is a lower bound
on the total number of moves.

This number, customarily called the “f -value”,
can be used in two ways: to guide the search and
to reduce the effective depth of the search. The first
idea naturally leads to the A* algorithm: “promis-
ing” states are examined first. The second is ap-
plied in the IDA* algorithm: “hopeless” states are
not examined at all. As elaborated later, both al-
gorithms can be extended to also take the other
aspect into account.

There is no general method of finding admissible
heuristics; usually, one tries to examine variations
of the original problem with relaxed restrictions,
where the solution length can be trivially found.

3 Related Puzzles

Atomix has some similarities to well-known other
puzzles, but also some interesting new properties.
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Figure 3: The 15-puzzle in its goal state.

Table 1 compares some search space properties of
Atomix to other games.

It seems that regarding “difficulty” Atomix lies
somewhere in between the 24-Puzzle and Sokoban:
Solution lengths are shorter than for the 24-Puzzle
or Sokoban, but the branching factor is consider-
ably higher than for the 24-Puzzle, and the state
space is considerably larger than for Sokoban.

Due to its close relationships to Atomix (which
will become important in the next section), we dis-
cuss the 15- and the 24-puzzle as special instances
of the (n2 − 1)-puzzle in more details.

3.1 The 15-Puzzle

The 15-puzzle (see Fig. 3) was invented in 1878 by
Sam Loyd, and became instantly very popular all
over the world [JS79]. It consists of a square tray of
size 4× 4 with 15 tiles numbered 1 through 15 and
one empty square. A move consists of sliding one
tile adjacent to the empty square into the empty
space. The goal is to obtain the usual ordering of
the numbers on the tiles by some move sequence.

The 15-puzzle is likely to be the most thoroughly
analyzed puzzle of this kind [Kor85, KT96]. It
serves as a kind of “fruit fly” for heuristic search.
It is easy to implement, has an obvious heuristic
with the “Manhattan distance”, and not too large
a search space.

The Manhattan distance heuristic can be calcu-
lated by summing up the number of turns it would
take for a tile to get to its goal position if it was
the only tile in the tray. This is obviously a lower
bound on the actual number of turns.

Many search methods developed for the 15-
puzzle can be easily adapted for Atomix. One

important difference is that the underlying search
graph for Atomix is directed; not every move can
be undone.
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Figure 4: The top problem can be solved in 13
moves. We cannot get a lower bound by leaving
out one atom, as in the bottom picture; the problem
even becomes unsolvable.

Improved heuristics for the 15-puzzle make it
possible to solve even the extended “24-puzzle”-
variation [KT96]. Most of them follow the com-
mon theme of examining a sub-problem where only
a few tiles are regarded and most are ignored. The
“linear conflict heuristic” [HMM92], for example,
tries to find pairs of tiles in a row or column which
need to pass each other to get to the goal position.
In such a case, another two moves can be added
to the heuristic given by the Manhattan distance,
since one tile will have to move out of the way and
back.

The work of Culberson and Schaeffer [CS96,
CS98] generalizes this idea to “pattern databases”:
Each possible distribution of the tiles 1–8 on the
board is analyzed and solved, yielding a lower
bound which is often better than the Manhattan
heuristic with the linear conflict heuristic, since
there are more tile interactions. The same is done
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24-Puzzle Rubik’s Cube Sokoban Atomix

Branching factor Range 2–4 18 0–50 12–40
Effective 2.3 13.3 10 7

Solution length Typical 100 18 260 45
Range 1–112 1–20 97–674 8–70

Search-space size Upper bound 1025 1019 1018 1021

Underlying graph Undirected Undirected Directed Directed

Table 1: Search space properties of different games (adapted from Junghanns [JS00]; additional sources
are [KT96, Kor97, EK98]). The effective branching factor is the number of children of a state, after ap-
plying memory-bounded pruning methods (in particular, not utilizing transposition tables; see Sec. 5.3.1
for the methods applied to Atomix). For Sokoban and Atomix, the numbers are for typical puzzles from
the human-made test sets; for Sokoban, those problems are about 20×20 and, for Atomix, about 16×16
fields large.

for the other 7 tiles.

The database takes about half a gigabyte and can
be reused for each problem instance. Korf and Fel-
ner have improved this technique to yield solutions
within seconds [KF01].

Unfortunately, these powerful techniques can-
not be directly applied to Atomix, since removing
atoms from a state does not necessarily make it eas-
ier to solve; in fact, it can even become unsolvable,
as is illustrated in Fig. 4.

3.2 Sokoban

Sokoban is a computer solitaire game that was in-
vented in Japan in 1982. It shows some similarities
to Atomix: it is played on a grid where identical
“stones” have to be pushed to storage positions (see
Fig. 5).

The main difference is that, in Sokoban, the
player is explicitly represented on the board and
occupies one square. He can enter adjacent empty
fields or push adjacent stones away from him,
thereby entering their previous position. The stone
will only move a single field. If there’s another stone
or a wall behind it, it can’t be moved at all. Usually,
the objective is to minimize the number of stone
pushes; minimizing the number of player moves is
considered to be harder since it is not as easy to
find a good lower bound.

What makes Sokoban somewhat more difficult
than Atomix is the frequent occurrence of dead-

Figure 5: The first one in the collection of “classic”
Sokoban problems. The striped area contains the
six storage positions.

locks, i. e., states from which no solution can be
found. For many human-designed problems, the
first few moves have to be done very carefully to
keep the puzzle solvable. This makes it hard even
to find non-optimal solutions. While for Atomix
deadlocks are possible, too, they don’t usually oc-
cur in human-made problems and would likely be
easier to detect.

In addition to that, typical Sokoban solutions are
quite long (100–600 moves), and the branching fac-
tor can be even larger than for Atomix. Common
with Atomix is the difficulty in isolating subgoals.

The best known admissible heuristic for Sokoban
needs to perform minimum cost perfect matching to
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assign stones to goal positions optimally [JS00]. It
takes O(#stones2) time to calculate per state, even
when reusing information from the parent state.
Therefore, much less states can be explored; while
for Atomix 1,000,000 states per second can be gen-
erated, this number is for Sokoban around 10,000.

Sokoban has been shown to be PSPACE-
complete by Culberson [Cul98]. Junghanns has an-
alyzed it thoroughly and written the sophisticated
solver program Rolling Stone [Jun99].

4 Complexity of Atomix

4.1 Complexity of Sliding-Block
Puzzles

The time complexity of sliding block puzzles was
the subject of intense research in the past. Though
seemingly trivial, most variations are at least NP-
hard and, some, even PSPACE-complete. Table 2
shows some results. The table was basically taken
from Demaine et al. [DDO00], extended by the cat-
egory of games where the blocks are pushed by an
external agent not represented on the board, into
which Atomix falls. The columns mean:

1. Are the moves performed by a robot on the
board, or by an outside agent?

2. Can the robot pull as well as push?

3. Does each block occupy a unit square, or may
there be larger blocks?

4. Are there fixed blocks, or are all blocks mov-
able?

5. How many blocks can be pushed at a time?

6. Does it suffice to move the robot/a special
block to a certain target location, instead of
pushing all blocks into their goal locations?

7. Will the blocks “keep sliding” when pushed un-
til they hit an obstacle?

8. The dimension of the puzzle: is it 2D or 3D?

4.2 A Formal Definition of Atomix

We will now give a formal definition of an Atomix
problem instance (level).

Definition 1. An Atomix problem instance con-
sists of:

• A finite set A of so-called atom types.

• A game board B = {0, . . . , w−1}×{0, . . . , h−
1}.

• A bit matrix O = (O[p] ∈ {0, 1} | p ∈ B) of
size w×h (the obstacles). A position is simply
a tuple p = (px, py) ∈ B. A state s is defined
as a subset of A × B. An element of s is also
called an atom. Note that the same atom type
might appear several times in a state.

A position p = (px, py) is said to be empty for
a state s if O[p] = 0 and there is no a ∈ A with
(a, (px, py)) ∈ s.

Positions outside of B are assumed not to be
empty.

• A state S (the start state), which satisfies that,
for all (a, p) ∈ S, O[p] = 0.

• A state G (the goal state). For the problem
to be solvable, for all (a, p) ∈ G, O[p] = 0
and there must be a bijection between S and G

where each atom in S maps onto an atom in
G with the same atom type.

A direction (dx, dy) is a tuple of x and y offsets,
i. e., one of (0,−1), (1, 0), (0, 1) and (−1, 0). A
move is a tuple of a position p and a direction d.
For a state s, a move (p, d) is only legal if there is
an atom (a, p) in s, and (px +dx, py +dy) is empty.

Applying a move (p, d) to a state s will yield an-
other state s′ in which every atom has the same
position, except the atom (a, p): it will be replaced
by (a, p′) with p′ = (px + δdx, py + δdy), where
(px + δ′dx, py + δ′dy) is empty for all 0 < δ′ ≤ δ,
and (px + (δ + 1)dx, py + (δ + 1)dy) is not empty.

A solution is a sequence of moves which, incre-
mentally applied to the start state, yields the goal
state.

The main difference between this formal defini-
tion and the informal introduction is that the goal
positions of the atoms are given explicitly. The rea-
son is that this makes the puzzle both easier to an-
alyze and to implement. Since the number of goal
positions is linear in the board size, this difference
does not affect the time complexity significantly.
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1. 2. 3. 4. 5. 6. 7. 8. 9.
Game Robot Pull Blocks Fixed # Path Slide Dim. Complexity

+ + L + k + − 2D NP-hard [Wil88]
+ − unit + k + − 2D NP-hard [DO92]

PushPush3D + − unit − 1 + + 3D NP-hard [OT99]
PushPush + − unit − 1 + + 2D NP-hard [DDO00]

+ − unit − k + − 2D open [DO92]
+ − unit − 1 − + 2D NP-hard [OT99]

Push-∗ + − unit − k − − 2D NP-hard [Hof00]
Sokoban+ + − 1×2 + 2 − − 2D PSPACE-compl. [DZ99]
Sokoban + − unit ∗ 1 − − 2D PSPACE-compl. [Cul98]
Sokoban + − unit + 1 − − 2D PSPACE-compl. [Cul98]
15-Puzzle − unit − 1 − − 2D NP-hard [RW90]
Rush Hour − 1×{2,3} − 1 + − 2D PSPACE-compl. [FB02]

Atomix − unit + 1 − + 2D PSPACE-compl. [HS01]

Table 2: Time complexity of some sliding-block puzzles.

Our implementation handles different possible goal
positions by imposing a move limit and trying all
possible goal positions with that limit, and repeat-
ing with an incremented move limit until a solution
is found.1

There are also some conventions for “proper”
level design which have been dropped for simplic-
ity: For a good level, the goal constellation should
be a chemically valid molecule, and this molecule
should be the only possibility to satisfy the bind-
ings of the atoms. The formal definition doesn’t
have these restrictions; it doesn’t even require the
goal positions to be adjacent.

4.3 The Hardness of Atomix

Proposition 1. Atomix on an n× n board is NP-
hard.

Proof. Any (n2 − 1)-puzzle instance can be trans-
formed into an Atomix instance by replacing the
numbered tiles with atoms of unique atom types,
as illustrated in Fig. 6 for the special case of the
15-puzzle.

For the (n2 − 1)-puzzle, a legal move consists of
sliding a tile into the empty space. In the reduction,
those are also the only legal moves, since all atoms

1As explained later, this incremental approach is already
inherent to IDA*, and can be applied to A* with reasonable
overhead.
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Figure 6: A 15-puzzle instance as Atomix level.
It can be solved by our Atomix solver optimally
within 34 moves.

not adjacent to the empty square cannot satisfy the
move legality condition, and those adjacent to the
empty square can only take its place as a move.

As shown by Ratner and Warmuth, the (n2−1)-
puzzle is NP-complete [RW86, RW90], so Atomix
is NP-hard.

Proposition 2. Atomix on an n × n board is in
PSPACE.

Proof. A nondeterministic Turing-machine can
solve Atomix by repeatedly applying a legal move
from the start state encoded on its tape until a goal
is reached. The number of possible Atomix states
is limited by n2!; hence, the machine can announce
that the puzzle is unsolvable after having applied
more moves without finding a solution. Since an
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encoding of an Atomix state needs only polyno-
mial space, it follows that Atomix is in NPSPACE,
and, by virtue of Savitch’s theorem [Sav70], also in
PSPACE.

If one could prove that optimal solution lengths
for Atomix are bounded by a polynomial of the
problem size, it would follow with the same reason-
ing that Atomix is in NP.

Considering that Sokoban, which shows some
similarities to Atomix, is PSPACE-complete, it
doesn’t seem unlikely that Atomix falls into this
class, too. This would imply the existence of
superpolynomially long optimal solutions (unless
NP = PSPACE).

After submission of this paper, Holzer and
Schwoon [HS01] showed by reduction from non-
empty intersection of finite automata that Atomix
is indeed PSPACE-complete. They also provided a
level with an exponentially long optimal solution.

5 Searching the State Space of

Atomix

Much progress has been made in the area of heuris-
tic search. This is due to three components:

• faster machines with more memory,

• better heuristics, and

• better search methods.

Of these three, by far, the largest improvements
come from better heuristics. The reason for this
is, simplified, that a better heuristic has the po-
tential of cutting away several layers of the search
tree, which can result in dramatic savings due to
the exponential nature of searching (see, for ex-
ample, [JS00]). On the other hand, better search
methods often improve running time just by a con-
stant factor.

5.1 Heuristics for Atomix

As is often the case, a heuristic for Atomix can be
devised by examining a model with relaxed restric-
tions. We drop the condition that an atom slides
as far as possible: it may stop at any closer posi-

tion. These moves are called generalized moves. 2

In order to obtain an easily computable heuristic,
we also allow that an atom may also pass through
other atoms or share a place with another atom.
The goal distance in this model can be summed up
for all atoms to yield an admissible heuristic for the
original problem.

The following properties are immediate conse-
quences of the definition.

Property 1. The heuristic is admissible.

Proof. Since any Atomix move is also a legal gen-
eralized move, every solution with Atomix moves
is also a solution in the relaxed model, and, there-
fore, can’t be shorter than the shortest solution of
the relaxed model.

Property 2. The h-values of child states can only
differ from that of the parent state by 0, +1 or −1.

Proof. The absolute value of the difference cannot
be larger than 1, since a single generalized move can
be used to transform the parent into the child or
the child into the parent. Examples for differences
of 0, +1 or −1 can be found easily.

Property 3. The heuristic is monotone (consis-
tent), i. e., the f-value of a child state cannot be
lower than the f-value of the parent state.

Proof. Follows immediately from the previous
property.

An important property for implementations is
that this heuristic can be calculated very efficiently.
A table of distances from all board positions to any
goal position can be precalculated with breadth-
first search. For n different atoms, calculating h

then takes n table lookups. 3 By only recalcu-
lating the goal distance of the moved atom, it can
even be calculated in constant time, which makes
a noticeable difference to Sokoban, where a good
heuristic takes O(n2) time [JS00].

Apart from this somewhat obvious heuristic, it
proved to be pretty hard to make any improve-
ments. Two ideas were considered, but not im-
plemented due to their limited applicability:

2The variant of Atomix which uses generalized moves has
an undirected search graph. Atomix with generalized moves
on an n × n board is also NP-hard but is in PSPACE.

3This is more complicated if there are atoms with iden-
tical atom type; see Sec. 6.1.
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Figure 7: An example for the “cave”-heuristic: if
only one atom is in the cave, the number denoted
on its square can be added to the heuristic estimate.
For example, an atom on the light grey square has
to take the path marked with a solid line, instead
of the optimal path of generalized moves marked
with a dashed line, which is two moves shorter.

• If an atom needs a “stopper” at a certain posi-
tion to make a turn for each optimal path, but
no optimal path of any atom has an intermedi-
ate position at the stopper position, h can be
incremented by one.

Unfortunately, gaining more than one move
from this “stopper” heuristic isn’t easy, since it
could happen that by leaving its optimal path
one atom can act as stopper for several other
atoms on their optimal paths.

• If an atom is alone in a “cave”, for some po-
sitions, one or two moves can be added to the
heuristic (see Fig. 7 for an example). A “cave”
is an area that contains no goal position and
has only one entry; if an atom is alone in there,
it cannot use any stoppers unless another atom
leaves its optimal path. This heuristic has a
greater potential, since it can be added up ad-
missibly for each cave.

Unfortunately, only a few levels from our test
set contain caves which could yield improved
heuristics.

5.2 A*

A* is one of the oldest heuristic search algo-
rithms [HNR68]. It is very time-efficient, but needs
an exponential amount of memory. See Fig. 8 for
some pseudo-code.

list<Move> aStar(State start) {

// sorting criterion is f

priority_queue<State> open;

set<State> states;

open.push(start);

while (not open.empty()) {

State best = open.pop();

list<Move> moves = best.expand();

forall (move in moves) {

State child = best.apply(move);

if (child.isGoal())

return solution;

State cached = states.find(child);

if (cached == None

or cached.g > child.g) {

states.insert(child);

open.push(child);

}

}

}

}

Figure 8: Pseudo-code for A*

A* remembers all states ever encountered in a
set states, which is the reason for its exponential
space complexity. A priority queue open holds all
states that have not yet been expanded. It is sorted
by the f -value of the states. Nodes are popped from
the queue and expanded afterwards. The children
are inserted into the queue or discarded if they were
already encountered. Sometimes, the same state is
reached with a lower g-value; in that case, its entry
in the state table has to be updated and it will
be re-inserted into the queue. With an admissible
heuristic, A* will always find an optimal solution.

Many implementations of these abstract data
structures have been suggested. The state table
is usually implemented as a hash table for fast ac-
cess and low memory overhead. The priority queue
can be implemented with a bucket for each f -value,
containing all open states with that f -value. In
Sect. 6.2, we present an alternative implementation
that only needs the state table and does without a
priority queue.
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list<Move> dfs(int bound, State state) {

if (state.isGoal())

return solution;

if (state.g + state.h() > bound)

return;

forall (move in state.moves()) {

State child = state;

child.apply(move);

if (idaStar(bound, child))

return solution;

}

}

list<Move> idaStar(State start) {

int bound = 0;

loop {

if (dfs(bound, start))

return solution;

bound = bound + 1;

}

}

Figure 9: Pseudo-code for IDA*

5.3 IDA*

Iterative Deepening A* (IDA*) was the first algo-
rithm that allowed finding optimal solutions to the
15-puzzle [Kor85]. Figure 9 shows some pseudo-
code.

IDA* performs a series of depth-first searches,
with an increasing move limit. The heuristic is used
to prune subtrees where it is known that the bound
will be exceeded, since the f -value is larger than the
bound. Each iteration will visit all nodes encoun-
tered in the previous iteration again; but, since the
majority of nodes will be generated in the last it-
eration, this does not affect the time complexity.

IDA* uses no memory except for the stack, so
its memory use is linear in the search depth. Also,
since it needs no intricate data structures, it can
be implemented very efficiently. But of course, this
comes at a price: IDA* does not detect transposi-
tions in the search graph. If a state is encountered
that has already been expanded and dismissed, it
will be expanded again, possibly resulting in the
re-evaluation of a huge subtree.

There are two approaches to mitigate this weak-

ness:

• use of problem specific knowledge and

• use of memory.

5.3.1 Pruning the Search Space.

Several techniques are known for pruning the search
tree:

• Predecessor Elimination, which disallows to
take back moves immediately. For games
with undirected underlying graphs like the 15-
puzzle, this is an obvious optimization. For
Atomix, it can still be applied, since pushing
an atom into the opposite direction immedi-
ately after a move always yields the same state
as pushing it in that direction in the first place.

• Finite-State Machines [TK93, Ede97]. For the
15-puzzle, many move sequences lead to iden-
tical states. With a breadth-first search, such
move sequences can be learned and encoded
in an FSM, which can then be applied with
very low overhead to the depth-first search.
This technique cannot be applied to Atomix
directly, since the result of a move depends on
the position of the other atoms, and thus a
transposition cannot be detected by just look-
ing at a sequence of moves.

• Move Pruning. When examining a solution
move sequence for an Atomix level, one no-
tices that many, though not all moves could be
interchanged. Interchanging moves is not pos-
sible in four cases, as is explained in Fig. 10.

The idea is to check if a generated move is in-
dependent of the previous move (i. e., applying
them in reversed order would yield the same
state) and, if they are independent, to impose
an arbitrary order (the atom with the lower
number must move first). This scheme has
proven to be very efficient in avoiding trans-
positions, reducing running time by several or-
ders of magnitudes.

5.3.2 Move Ordering.

Reinefeld and Marsland [RM94] proposed expand-
ing more “promising” states first in an IDA* search.
This can reduce the number of states expanded in
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(3)

(1)

(2)

(4)

previous move

Figure 10: There are four cases where two moves
are dependent, i. e., their order cannot be inter-
changed: (1) The current atom would have stopped
the previously moved atom earlier. (2) The current
atom uses the previously moved atom as a stop-
per. (3) The current atom would stop earlier if the
previously moved atom had not been moved. (4)
The current atom was the stopper of the previously
moved atom.

the final iteration considerably, since the search will
be aborted as soon as a solution is found.

It offers no savings at all for previous iterations;
exactly the same states will be examined. Figure 11
illustrates this: The solution in 27 moves is found
so early that even less states were generated that
in the iteration with maximal 26 moves.

It is an obvious choice to use f as a measure
of “hopefulness” for move ordering, but other cri-
teria are possible: For Sokoban, it has been ob-
served that solutions often contain long sequences
of pushes of the same stone. Junghanns successfully
implemented a move ordering scheme that first ex-
pands all moves that push the same stone as the
previous move (the inertia moves) [JS00].

For Atomix, move ordering that simply orders
children by their f -values proved to be very effi-
cient. It is also easy to implement with our heuris-
tic, since as shown in Sec. 5.1, there are only 3 dif-
ferent f -values of child states possible, so the suc-
cessors can simply be sorted into 3 buckets, which
can then be successively expanded.

15 16 17 18 19 20 21 22 23 24 25 26 27

Figure 11: Number of states generated for increas-
ing IDA* search depths of the level “katomic 06”
while utilizing move ordering. In total, 553,198,798
states were generated.

5.4 Partial IDA*

Analogously to the two-player game search, a trans-
position table can be used to avoid re-expanding
states [RM94]. States are inserted into a hash table
together with their g-value as they are generated.
Then, for each newly generated state, it is looked
up whether it has already been expanded with the
same or a lower g-value so it can be pruned. If
memory was unlimited, this would avoid all possi-
ble transpositions. Many schemes have been pro-
posed for proper management of the transposition
table with limited memory [ES95]; our implemen-
tation simply refuses to insert states into an ex-
hausted table.

A lot of memory can be saved with Partial
IDA* [ELL01, EM01]. This idea originates in the
field of protocol verification, where the objective is
to generate all reachable states and check if they
fulfill a certain criterion. A hash table is used to
avoid re-expanding states. Just as for a single-agent
search, memory is the limiting resource. Therefore,
Holzmann suggested bitstate hashing [Hol87]: in-
stead of storing the complete state, only a single
bit corresponding to the hash value is set, indicat-
ing that this state has been visited before. Because
of the possibility of hash collisions, states might get
pruned erroneously, so this method can give false
positives. When applied to IDA*, states on opti-
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mal paths could get pruned, so the method looses
admissibility, but is still useful to determine upper
bounds and likely lower bounds.

For Atomix, initial experiments with Partial
IDA* rarely found optimal solutions. The reason
is that just knowing a state has been encountered
before is not sufficient, because if we encounter it
with a lower g-value than previously, it needs to
be expanded again. To achieve this, we include g

into the hash value and look up with g and g − 1.
This means transpositions with better g will not be
found in the table and expanded, as desired. Trans-
positions with g worse by 2 or more will also not
be detected; experiments showed that they are rare
and the resulting subtrees are shallow, though.

By probing twice (with g and g− 1), we increase
the likelihood of hash collisions. For example, if
we declare the table to be full if every 8th bit is
set, we have an effective memory usage of 1 byte

per state, and a collision probability of 1 −
(

7
8

)2
=

23%. To improve the collision resistance, one can
calculate a second hash value and always set and
check two bits, effectively doubling memory usage

but lowering collision probability to 1−
(

63
64

)2
= 3%.

A related scheme with better memory efficiency
and collision resistance is hash compaction [WL93].
It utilizes a hash table where, instead of the com-
plete state, only a hash signature is saved. In our
implementation, we use 1 byte for the signature,
and probe for g and g−1. This way, we have a col-

lision probability of 1 −
(

255
256

)2
= 0.8%, so even if

there is only a single possible solution of length 30,

the probability of finding it is
(

(

255
256

)2
)30

= 79%;

and in fact, all 47 solutions found this way were
optimal.

Different policies are possible in the case of
a hash collision detected by differing signatures.
Usual hash table techniques like chaining or open
addressing can be applied. We tried a much sim-
pler scheme: the old entry gets overwritten. This
can be seen as a special case of the t-limited scheme
proposed by Stern and Dill [SD96] with t = 1. One
disadvantage of this scheme is that entries will al-
ready get overwritten before the table is completely
full. Since for the “interesting” (difficult) cases, the
state table will fill up soon anyway, this effect is
limited.

5.5 Backward Search

Many puzzles are symmetric, i. e., the set of chil-
dren of a state equals the set of possible parents.
This is equivalent to the state space graph being
undirected. As already mentioned, this is the case
for the 15-puzzle, but not for Sokoban or Atomix.
For Atomix, it is simple to find all potential par-
ent states, though: they can be found by applying
all legal backward moves. In a backward move, an
atom being pushed may stop moving at any posi-
tion, but it can only be pushed in a direction if it
is adjacent to an obstacle in the opposite direction.

Formally defined, a backward move is a triple of a
position p, a direction d, and a distance δ. It is legal
for a state s if there is an atom (a, p) in s, and (px−
dx, py −dy) is not empty, and (px + δ′dx, py + δ′dy)
is empty for all 0 < δ′ ≤ δ. Applying a backward
move is analogous to applying a forward move.

It is clear that a sequence of backward moves that
transforms the goal state into the start state can
be easily converted into a solution for the normal
puzzle.

This “backward Atomix” could be clad into the
following story: In a space station, robots have
held a gathering and now need to get back to their
places. Since there is no gravity, wheels would be
useless; they can only push themselves off the wall
with a kicker. By adjusting the kicking power, they
can choose the place where they stop due to fric-
tion. Also, they have a device to fix themselves to
the floor, so a robot can use another robot to push
itself off. Some robots are of equal models and can
be arbitrarily assigned to their positions.

To be equivalent to the informal Atomix, where
the goal position is not determined, the player
would first have to choose the place for the gather-
ing. It would be interesting to see whether human
players would consider this puzzle to be easier or
harder than “forward Atomix”.

Expanding states for backward Atomix is about
as easy as for forward Atomix, and the same heuris-
tic can be used, since the generalized moves from
Sect. 5.1 comprise backward moves. Hence, the cru-
cial point is the branching factor. At first glance,
it seems to be much larger; atoms may stop at any
position, so the branching factor is not limited by
4 · #states like for forward search. However, if an
atom stops “in the open”, it has no further move
option at all, while in forward search an atom usu-
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Figure 13: Though only one general move away
from the goal, this level takes 14 moves.

ally has at least one move option. Actually, it turns
out that both branching factors are identical:

Lemma 1. The sum of possible forward moves and
the sum of possible backward moves of all states of a
level are identical and, therefore, the average num-
ber of children for backwards expansion is exactly
the same as for forward expansion.

Proof. We first show the equality for a single atom
by structural induction. On a board with no empty
squares, the equation is trivially true. We show
it also remains true when removing an obstacle.
The change in the number of moves depends on
the pattern of empty squares around the obstacle
being removed; we examine all possible patterns
(up to symmetry, and omitting the trivial case of
4 obstacles), as illustrated in Fig. 12, with a, b, c

and d being the number of empty squares in each
direction.

(a) 3 adjacent obstacles: 1− b + b + 1 = 1 + 1 = 2.

(b) 2 adjacent obstacles, where the obstacles are
diagonally adjacent:
1 − b + b + d + 2 − d + 1 = 1 + 2 + 1 = 4.

(c) 2 adjacent obstacles, where the obstacles are
opposite:
c + 2 − b + 0 − c + b + 2 = 1 + 2 + 1 = 4.

(d) 1 adjacent obstacle: c + 2− b + d + 1− c + b +
2 − d + 1 = 1 + 3 + 1 + 1 = 6.

(e) no adjacent obstacles:
d+2−a+ c+2− b+0− c+ b+2−d+a+2 =
1 + 1 + 4 + 1 + 1 = 8.

Now, let us consider the contribution of one atom
to the possible moves. Each possible distribution
of the other atoms can be considered as a pattern
of obstacles. With the observation just made, the
sum of possible forward and backward moves is the
same when summing up over all possible positions
of the considered atom; so the sum over all possible
distributions of the other atoms is also identical
and, since this equality holds for each atom, the
lemma is true.

In practice, the branching factors can differ sub-
stantially, since the generated states are not ran-
dom; the move operators make certain states more
likely than others, and states close to the goal where
(by convention) all atoms are close together are
much more likely. In our experiments, we observed
differences up to 30% in forward and backward
branching factors.

5.6 Bidirectional Search

The heuristic is often especially bad for states close
to the goal; Figure 13 shows an example where the
heuristic estimates 1 move left, but it actually takes
at least 14 moves. The idea is to generate a hash
table of all states that are at most at distance, say,
6 from the goal by expanding the goal state with
reverse move operators. When now the heuristic
says “at least 3 moves left”, one can look up the
exact value in the hash table. If it is not at all in
the hash table, it is at least 7 moves away from the
goal.

In practice, this scheme failed miserably. It re-
duced the number of expanded states somewhat,
but not enough to even find one new lower bound
for any of the about 50 test levels. The reason
might be that subtrees close to the goal would get
pruned soon anyway due to the maximum move
bound (see Sec. 6.2).

6 Implementation

6.1 Identical Atoms

The presence of undistinguishable atoms (i. e.,
atoms with identical atom types) poses problems
for an implementation:
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Figure 12: The light grey obstacle in the center is being removed. The upper left corner of each square
denotes the number of backward moves that are lost or gained by this change for an atom on this square.
The lower right corner denotes the number of new forward moves. Squares which are skipped in the
sketches (denoted by dots) have zero gain with respect to both forward and backward moves.
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• The heuristic cannot simply perform a table
lookup to find a lower bound for an atom,
since it is not clear which atom should go to
which goal position. To find a good lower
bound, a minimum cost perfect matching has
to be done for each set of identical atoms to
find the cheapest assignment of atoms to goal
positions. This is the same problem as for
Sokoban, where all stones are identical. Min-
imum cost perfect matching for a bipartite
graph can be solved using minimum cost aug-
mentation in time quadratic in the number of
identical atoms [Kuh55].

Since most of our benchmark problems had
only unique atoms or pairs of atoms, we made
special cases for those and implemented the
matching by examining all possible permuta-
tions, which is only feasible for up to 5 or 6
identical atoms.

• States are represented as arrays of positions;
the atom type corresponding to a position is
not represented explicitly, but determined by
its index in the array. Thus, logically identical
states have different representations. This is
bad because we don’t want to waste space with
having the same state several times in the hash
table. We avoid this by converting a state to
a canonical form prior to inserting or lookup:
the positions have to appear sorted according
to an arbitrary order.

6.2 A*

As sketched in the pseudo code (Fig. 8), an imple-
mentation of A* needs the following operations:

• check if a state has been encountered before
and with which g-value,

• find an open state with optimal f -value,

• mark an open state as closed, and

• update the g-value of a saved state to a lower
value.

This is usually implemented with a hash table
and a priority queue which stores all open states.
We will show that if the heuristic is monotone, no
priority queue is actually needed: an optimal open

state can be found efficiently without any addi-
tional data structures. Our algorithm is easy to
implement and time and space efficient.

Initially, the available memory is allocated for
two tables: the state table and the hash table (see
Fig. 14). As states are generated, they are ap-
pended to the end of the state table; states never
get deleted. The states are tagged with an open-
bit and with the g-value. The hash table stores a
pointer into the state table at the position corre-
sponding to the hash value of the state; this allows
a quick lookup of states. A linear displacement
scheme is used to resolve hash collisions (in the fig-
ure, this happened for the hash value 273).

The monotonicity of the heuristic implies that
fopt, the currently optimal f -value of an open state,
is also monotone over the run of A*. To find an op-
timal open state, a linear search on the state table
is performed until an open state with f = fopt is
found. At first glance, this seems to be very slow,
since finding an optimal open state now could take
up to O(#states), whereas a normal priority queue
guarantees O(log #states) or even O(1) access. The
following proposition shows that this can be done
efficiently:

Proposition 3. In A* with a monotone heuristic
with a hash table and no additional data structure,
a state with optimal f-value can be found in amor-
tized time O(branching factor).

Proof. To achieve this, we need to ensure that, for
each fopt-value, when we reach the end of the state
table, we have expanded all states with f = fopt, so
we don’t have to go through the table again. This
can be ensured by not upgrading a state in place if
it is re-encountered with lower g, but to append it
at the end like new states. 4 States with f < fopt

will never be reopenened [ES00], so this suffices to
ensure the desired property.

Two kinds of states will be skipped because their
f -value differs from fopt:

• Closed states with f < fopt. We keep a pointer
to the very first open state, so only closed
states with f = fopt − 1 or f = fopt − 2 have

4Our implementation actually doesn’t do this, but in-
stead goes through the table repeatedly till no open states
with f = fopt are left. Since re-encountering open states
with lower g happens pretty seldom, usually just one or two
additional passes per fopt-value are needed.
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Figure 14: Hash structure used in our A*-implementation.

to be skipped; for any branching factor greater
than 1, this can be at most twice as many as
states with f = fopt and, with a higher branch-
ing factor, their number even becomes negligi-
ble.

• Open states with f > fopt. They must have
been generated by states with f = fopt or
f = fopt − 1, so their number is linear in the
number of states with f = fopt and the branch-
ing factor.

Our implementation with this scheme is several
times faster than a näıve implementation using the
C++ STL priority queue and set, which are
based on heaps, resp., binary trees, with a mem-
ory overhead of about 30 bytes per state. On a
Pentium III with 500 MHz, it can generate around
a million states per second.

Our scheme would be especially advantageous
with problems where a state can be represented
with few bits, like the 15-puzzle. Here, the low
memory overhead can make a big difference.

A disadvantage of this scheme is that it is not
possible to further discriminate among optimal
states. A common idea to speed up A* is to sort
among states with equal f -values those closer to
the top that are further advanced.

To trade time for memory, the A* implementa-
tion works iteratively: similarly to IDA*, an arti-
ficial upper bound on the number of moves is ap-
plied and, if the f -value of a generated state exceeds

this bound, it is pruned. If then the search fails,
it is restarted with the bound increased by one.
This also allows us to take multiple goal positions
into account. Due to the exponential behavior, this
slows down the search only by a constant factor.

7 Future Investigations

7.1 Atomix

There remain a lot of open questions about Atomix.
For the theoretical part:

• Can some well-known puzzles other than the
(n2 − 1)-puzzle, like perhaps Sokoban, be re-
duced to Atomix? This might give further in-
sight on their complexity, maybe even a proof
of PSPACE-completeness.

For practical implementations, the most promis-
ing area is better heuristics. Some ideas are men-
tioned in Sec. 5, but finding good heuristics is an
art, and so totally different approaches might be
possible.

We sketch further areas of research.

OBDDs [ER98] Ordered Binary Decision Dia-
grams (OBDDs) provide a means to efficiently
encode a set of states in a trie-like structure.

Stochastic Node Caching [MI98] Some states
in the transposition table are more “valuable”,
because they are encountered more often in the
state space search, for example if they are close
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to the start state. By inserting states not al-
ways, but only with a fixed probability, one
can increase the likeliness that only “valuable”
states make it into the hash table. The diffi-
culty lies in tuning the probability to fit the
state space size; if the probability is chosen
low and the state space is actually small, so
that it would fit completely into the memory,
a lot of states are expanded needlessly. Per-
haps this scheme can also be combined with
Partial IDA*.

External memory Edelkamp and Schrödl [ES00]
manage to make A* more external memory
friendly by grouping “neighbored” states to-
gether in memory. Since the search domain
was a real 2D-map, it was easy to find an a
priori criterion for this; for Atomix, this would
be considerably harder.

A* One could try to save memory in the A* hash
table by not storing the state itself, but re-
generate it on each access from the predeces-
sor pointers. Perhaps, also the move pruning
methods from Sec. 5.3can be applied to A*.

Bidirectional Search More elaborated bidirec-
tional search schemes could prove to be worth-
while [KK97]. A recent option to reduce
the memory overhead of A* was proposed
by Korf [Kor99]; his method does without a
closed -list.

Nonoptimal solutions. This field is nearly unex-
plored currently. It should be easier than for
Sokoban to find any solution within reason-
able time. We found several nonoptimal so-
lutions with WIDA*: in an IDA* search, the
h-value is scaled by a constant factor like 1.5.
This favors further advanced states, but usu-
ally prunes states which could still lead to an
optimal solution.

7.2 Search Techniques

The most promising topic seems to be Partial
IDA*, especially combined with hash compaction.
Experiments with different problems, and better
bounds on the error probability would be desirable.

8 Conclusions

Atomix proved itself to be a challenging puz-
zle; this is corroborated by the recent PSPACE-
completeness proof. The classic algorithms A* and
IDA* have been implemented and adapted to the
problem domain; we have found optimal solutions
for many problems from our benchmark set. Our
A* implementation with a single data structure for
the open and closed set can solve “smaller” puzzles
very efficiently. With Partial IDA* based on hash
compaction, we have presented a memory-bounded
scheme that makes excellent use of the available
memory and has low runtime overhead; improved
bounds on the error probability would be useful,
though. Further progress is likely to come from
improved heuristics rather than from better search
methods, since our current heuristic is rather un-
informed. We have shown that while the search
graph is directed, the backward branching factor
does not differ from the forward branching factor;
this makes Atomix an interesting testbed for bidi-
rectional algorithms.
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A Source

The solver is written in ANSI C++ in a fairly low-level style. It does not need any li-
braries beside the C++ standard libraries; it has been tested on Alpha and ix86 systems and
with gcc version 2.95, version 3.0 and the Compaq cxx compiler. The source can be found at
http://www-fs.informatik.uni-tuebingen.de/~hueffner.

Levels are read in a format taken from katomic:

[Level]

Name=Water (Atomix 01)

atom_1=1-c

atom_2=3-cg

atom_3=1-g

feld_00=...............

feld_01=...............

feld_02=...............

feld_03=..#####........

feld_04=..#...#........

feld_05=..#..3######...

feld_06=..#..#.....#...

feld_07=..#.#......##..

feld_08=..#.#..#.##.#..

feld_09=..#....#.#2.#..

feld_10=..###1#..#..#..

feld_11=...#........#..

feld_12=...##########..

feld_13=...............

feld_14=...............

mole_0=123

The format is mostly self-explaining; the atom type and binding information (3-cg) is ignored by the
solver.

The solver is built with several abstract data types, implemented as C++ classes. Each class is is split
into two files: the declaration (extension .hh) and the implementation (extension .cc). Table 3 gives an
overview of the source.

The size of the board and the number of Atoms is hardcoded in Size.hh. This allows to allocate
memory statically, which improves speed and memory efficiency. For convenience, the script run.sh is
included, which is called with a level file, and will adapt Size.hh and recompile. If the board size grows
beyond 256 fields, some types would have to be adapted, since currently the type of a field number is a
byte.

The maximum amount of memory to use is hardcoded in parameters.hh and needs to be adapted to
the machine.

While the A* algorithm has no options, a lot of things can be tuned for IDA* in the header file
IDAStar.hh, as shown in the following table.
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Option Effect

DO BACKWARD SEARCH Use inverse move operator and search a path from the goal state to the
start state.

DO MOVE PRUNING Apply move pruning as explained in Sec. 5.3.1.
DO CACHING Use a hash table to detect transpositions.
DO PREHEATING Only meaningful with DO CACHING. Run IDA* also with all limits up

to the current limit −3. This is supposed to allow the “most useful”
states to enter the cache, but potentially slows down the search and skews
statistics.

DO PARTIAL Partial IDA* with bitstate hashing.
DO COMPACTION Partial IDA* with hash compaction.
DO STOCHASTIC CACHING Stochastic state caching. A state will be inserted into the cache with

probability CACHE INSERT PROBABILITY.

File Function

AStar.hh/cc Implementation of A* as described in Sec 6.2.
AStarState.hh A state for A*. Saves a pointer to the parent state and the open bit. Also

the heuristic estimate is cached to avoid recalculating.
Atom.hh/cc Atom representation including bindings and element. Only used for I/O.
BitVector.hh A simple bit vector, needed for bitstate hashing.
Board.hh/cc A complete board representation. Only used for I/O.
CacheState.hh Derived from State; solves the problem mentioned in Sec. 6.1 that the

state representation is unique by sorting identical atoms according to
their position.

Dir.hh A direction (up, down, left or right).
HashTable.hh A hash table with linear displacement used for the transposition table in

IDA*.
IDAStar.hh/cc The IDA* implementation. Includes transposition tables and partial

search. Most enhancements are selectable at compile time via #defines

in the header file.
IDAStarCacheState.hh Like CacheState, but also remembers g and h.
IDAStarState.hh The state representation used in the IDA* search. Since memory is not a

concern, it can cache h and keep a matrix of field content for faster move
generation and easier move dependency checking.

Level.hh/cc Contains two Boards for the start and the goal state. Only relevant for
I/O; reaching the goal state is detected by h = 0.

Move.hh Representation of a generalized move.
Pos.hh A position on the board; mainly used for I/O.
Problem.hh A helper class that prepares some data structures for the search, e. g.

distance tables for the heuristic.
Size.hh Contains the hardcoded board size and atom number.
State.hh/cc A basic state representation. A state is compactly encoded as an array

of positions. Derived from by AStarState and IDAStarState which add
additional functionality.

Table 3: Overview of some source files of the solver.
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B Experimental Results

The experiments were performed on a Pentium III with 500 MHz, utilizing 128 MB of
main memory and imposing a time limit of one hour. The source can be found at
http://www-fs.informatik.uni-tuebingen.de/~hueffner.

Man Best result found by participants of an online game
IDA*-tt IDA* with transposition table
IDA*-r IDA* backward search with transposition table
PIDA* Partial IDA* with hash compaction to 1 byte

Level Atoms Goals Man A* IDA* IDA*-tt IDA*-r PIDA*

Atomix 01 3 17 = 13 = 13 = 13 = 13 = 13
Atomix 02 5 6 = 21 = 21 = 21 = 21 = 21
Atomix 03 6 4 = 16 = 16 = 16 = 16 = 16
Atomix 04 6 2 ≥ 23 ≥ 22 = 23 = 23 = 23
Atomix 05 9 2 ≥ 34 ≥ 34 ≥ 35 ≥ 35 ≥ 37
Atomix 06 8 4 = 13 = 13 = 13 = 13 = 13
Atomix 07 9 1 ≥ 25 ≥ 26 = 27 ≥ 25 = 27
Atomix 09 7 1 = 20 = 20 = 20 = 20 = 20
Atomix 10 10 2 ≥ 28 ≥ 28 ≥ 28 ≥ 27 ≥ 30
Atomix 11 5 14 = 14 = 14 = 14 = 14 = 14
Atomix 12 9 4 = 14 = 14 = 14 = 14 = 14
Atomix 13 8 1 = 28 = 28 = 28 = 28 = 28
Atomix 15 12 1 ≥ 35 ≥ 36 ≥ 37 ≥ 37 ≥ 37
Atomix 16 9 2 ≥ 26 ≥ 26 ≥ 27 ≥ 25 ≥ 28
Atomix 18 8 4 = 13 = 13 = 13 = 13 = 13
Atomix 22 8 3 ≥ 24 ≥ 24 ≥ 25 ≥ 23 ≥ 27
Atomix 23 4 20 = 10 = 10 = 10 = 10 = 10
Atomix 26 4 17 = 14 = 14 = 14 = 14 = 14
Atomix 28 10 1 ≥ 28 ≥ 29 ≥ 29 ≥ 26 ≥ 29
Atomix 29 8 2 = 22 = 22 = 22 = 22 = 22
Atomix 30 8 4 = 13 = 13 = 13 = 13 = 13
Unitopia 01 3 41 11 = 11 = 11 = 11 = 11 = 11
Unitopia 02 4 5 22 = 22 = 22 = 22 = 22 = 22
Unitopia 03 5 12 16 = 16 = 16 = 16 = 16 = 16
Unitopia 04 6 5 20 = 20 = 20 = 20 = 20 = 20
Unitopia 05 6 7 21 = 20 = 20 = 20 = 20 = 20
Unitopia 06 9 2 33 ≥ 29 ≥ 30 ≥ 30 ≥ 30 ≥ 31
Unitopia 07 10 1 36 ≥ 33 ≥ 33 ≥ 34 ≥ 32 ≥ 35
Unitopia 08 7 4 25 = 23 = 23 = 23 = 23 = 23
Unitopia 10 8 2 41 ≥ 36 ≥ 36 ≥ 37 ≥ 38 ≥ 40

Time performance. A* runs out of memory usually much before a runtime of one hour and, so,
can establish less stringent bounds. The advantage of using a transposition table for IDA* outweighs
its runtime overhead and yields better results in all cases. Reverse search performs similar to forward
search, as founded by the theoretical findings. Partial IDA* consistently beats IDA* with conventional
hash tables because of better memory utilization and less runtime overhead. Note that most of these
differences are expected to be more significant if the time limit is increased.
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