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Abstract Flexible job-shop scheduling problem (FJSP)
is very important in many research fields such as produc-
tion management and combinatorial optimization. The FJSP
problems cover two difficulties namely machine assignment
problem and operation sequencing problem. In this paper, we
apply particle swarm optimization (PSO) algorithm to solve
this FJSP problem aiming to minimize the maximum com-
pletion time criterion. Various benchmark data taken from
literature, varying from Partial FJSP and Total FJSP, are
tested. Experimental results proved that the developed PSO
is enough effective and efficient to solve the FJSP. Our other
objective in this paper, is to study the distribution of the PSO-
solving method for future implementation on embedded sys-
tems that can make decisions in real time according to the
state of resources and any unplanned or unforeseen events.
For this aim, two multi-agent based approaches are proposed
and compared using different benchmark instances.
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Introduction

The study of production systems is complex given the large
number of integrated entities and their interactions. This
complexity is one of the scheduling problem causes, which
are generally recognized as very difficult to solve. Particu-
larly, the large number of entities that needs to be managed
according to a given schedule with a lot of tasks may involve
a lot of constraints. Among these constraints we can mention
the precedence, transportation, due date, time and/or resource
availability. Scheduling of operations involves the resource
allocation over a period of time to perform a collection of
tasks. This is one of the most critical issues in the planning
and managing of manufacturing processes (Pezzellaa et al.
2008).

Getting the best solutions for the scheduling problems is
of a big importance for industry, since the production rate and
the expense of any production plant depend on the schedules
used for controlling the work in the plant (Motaghedi-larijani
et al. 2010). An effective schedule enables the industry to
utilize its resources effectively and attain the strategic objec-
tives as reflected in its production plan (Girish and Jawahar
2009).

There are several types of scheduling problems in a pro-
duction system that differ according to the definition of their
range and their organization. One of the most difficult prob-
lems in this area is the Job-shop Scheduling Problem (JSP),
where a set of jobs must be processed by a set of machines.
Each job is formed by a sequence of consecutive opera-
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tions and each operation requires exactly one machine. The
decision concerns how to sequence the operations on the
machines, where a given performance indicator has to be
optimized (Pezzellaa et al. 2008).

In this paper we are interested in the flexible job shop
scheduling problem (FJSP) which is a generalization of the
classical job shop problem. Each operation can be processed
on a given machine that is chosen among a finite subset of
candidate machines. The FJSP is more difficult than the clas-
sical JSP since it adds a new decision level to the sequencing
one, i.e., the machine assignment that involves the selection
of one machine among the available ones for each operation.
Thus, the FSJP flexibility will be considerably increasing
the complexity of the problem as it requires an additional
level of decisions. The aim is to find an allocation for each
operation and to define the sequence of operations on each
machine to minimize the maximum competition time called
the makespan (Tanga et al. 2011).

For its strongly NP-hard nature, many efficient heuris-
tics and meta-heuristics methods are developed to get nearly
optimal solutions which satisfy the constraints and mini-
mize or maximize the objective function (Tanga et al. 2011;
Lai and Wu 2013; Gao et al. 2014; Gen and Lin 2014;
Fernández and Raupp 2014). Among these methods, we
have Genetic Algorithms (GA) (Jalilvand-Nejad and Fat-
tahi 2013), Particle Swarm Optimization (PSO) (Jia et al.
2007; Girish and Jawahar 2009; Jun-jie et al. 2009) and Tabu
Search (TS) methods (Li et al. 2010; Meeran and Morshed
2012).

This paper investigates an effective particle swarm opti-
mization algorithm for flexible job-shop scheduling problem
(FJSP). Moreover, in a real situation, events like machine
breakdowns and urgent client orders may occur which affects
the normal and good functioning of the shop floor. In this
case, the centralized approaches, like those cited above are
generally inefficient. For a better efficiency coping with
such situation, we propose for the FJS problem a distributed
approach based on multi-agent system mechanism.

The presentation of the paper is organized as follows:
First, an overview of relevant literature review is discussed in
section “Literature review”. Section “Problem formulation”
gives the formulation of FJSP. The PSO algorithm, parame-
ters selections, encoding scheme, initialization of the swarm
and neighborhoods topologies are presented in section “Par-
ticle swarm optimization”. Two multi-agent system based
approaches are presented in section “Distributed approche
using multi-agent system”. In section “Experimental results”,
the developed PSO algorithms are applied to solve com-
mon benchmarks selected from literature and the obtained
performance results are analyzed and discussed. Conclud-
ing remarks and future study directions are given in section
“Conclusions”.

Literature review

This section gives a literature review for solving the FJSP
while focusing only on meta-heuristic approaches such as
Tabu Search (TS), Simulated Annealing (SA), Genetic Algo-
rithms (GA) and the recently developed PSO (Pezzellaa
et al. 2008). A Tabu Search (TS) algorithm is implemented
by Brandimarte to solve the flexible job shop scheduling
problem targeting a makespan minimization (Brandimarte
1993).

Genetic Algorithms (GA) which are effective meta-
heuristics to solve combinatorial optimization problems have
been also successfully adopted to solve the FJSP. Many
papers are written on this topic (Kacem et al. 2002; Pezzel-
laa et al. 2008; Zhang et al. 2011; Zambrano rey et al. 2014).
All these studies used different integrated GA approaches
with different coding schemes, initial population genera-
tion, chromosome selection or offspring generation strate-
gies (Pezzellaa et al. 2008). Kacem et al proposed in (Kacem
et al. 2002) a genetic algorithm controlled by the assign-
ment model that was generated by the approach of local-
ization to mono-objective and multi-objective FJSP. Pezzel-
laa et al proposed a genetic algorithm with several tech-
niques to create population and select the individuals to
reproduce new individuals (Pezzellaa et al. 2008). Zhang et
al. developed a genetic algorithm and proposed two assign-
ment methods: Global Selection (GS) and Local Selection
(LS) to generate high-quality initial population in the initial-
ization stage and accelerate the convergence speed (Zhang
et al. 2011). Motaghedi-larijani et al proposed an hybrid
GA capable to optimize different objectives functions such:
minimizing makespan, minimizing total workload, and min-
imizing workload of the most loaded machine (Motaghedi-
larijani et al. 2010). In this work, a hill climbing approach is
also implemented to improve the GA solutions (Motaghedi-
larijani et al. 2010).

Rather than GA, PSO has been widely used in many
real world applications due to its simplicity and capabil-
ity to deal efficiently with optimization problems. Recently,
PSO is implemented to solve FJSP. In this context, Ven-
ter and Sobieszczanski introduced a parallel PSO algorithm
to enhance the performance of the approach (Venter and
Sobieszczanski-Sobieski 2006). Zhaohong Jia developed an
improved PSO to optimize the best overall solution by adding
chaotic methods (Jia et al. 2007). Bai Jun-jie et al proposed
a PSO algorithm to solve FJSP with split lot (Jun-jie et al.
2009).

Recently the hybridization of PSO with other meta-
heuristics to better solve the FJSP have been also success-
fully adopted. Many papers are written on this topic. Xia
and Wu introduced a hybrid algorithm that combines PSO
and simulated annealing to solve FJSP while minimizing
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the makespan (Xia and Wu 2005). Hongbo Liu et al imple-
mented a hybrid metaheuristic called the Variable Neigh-
borhood Particle Swarm Optimization (VNPSO) to solve a
multi-objective FJSP (Liu et al. 2007). Zhang et al. proposed
an hybrid algorithm between PSO and Tabu search to solve
FJSP (Zhang et al. 2009). Jun-qing Li et al proposed an hybrid
algorithm that combines PSO, Tabu search and genetic oper-
ators (mutation and crossover operators) to solve an FJSP
problem (Li et al. 2010). Tanga et al proposed an hybrid
algorithm that combines PSO and genetic algorithms (Tanga
et al. 2011).

During the last few years, successful results have been
achieved using distributed approaches like multi-agent sys-
tems to solve complex dynamic flexible job shop scheduling
problems targeting the next generations of advanced manu-
facturing systems that need to incorporate more distributed
control; machine flexibility and product flexibility (Emin
2012). For this case, Chen et.al (Chen et al. 2004) proposed
an agent-based genetic algorithm for solving a JSP problem.
In this work, the creation of the initial population is acceler-
ated and the processing of selection, crossover and mutation
are controlled in an intelligent way. Asadzadeh and Zamani-
far (Asadzadeh and Zamanifar 2010) implemented an agent-
based parallel genetic algorithm for the job shop scheduling
problem. In this case, the initial population is created in an
agent-based way by using the method proposed in (Chen et al.
2004) and an appropriate migration policy is defined to coor-
dinate the exchange of migrants between the different agents.
In (Azzouz et al. 2012) Azzouz and Ennigrou proposed a new
promising multi-agent approach to solve the FJSP. The pro-
posed model combines a local optimization approach based
on Tabu Search (TS) metaheuristic and a global optimiza-
tion approach based on genetic algorithm (GA). In this new
approach two sorts of agent are used: the first agent is named
resource agents and is responsible for the local optimization
process using Tabu search. The second is the interface agent
who has a global view of the system and is responsible for a
global optimization based on Genetic algorithm.

Another new multi-agent scheduling system MASS for
solving FJSP is presented by Wei and Dongmei in (Wei and
Dongmei 2012). In this work, the MASS is inspired by the
structure and negotiation strategies of the human immune
system HIS. Many other works can also be cited here. Enn-
igrou and Ghedira (Ennigrou and Ghédira 2004) propose a
multi agent model based on Tabu Search (TS). The authors in
(Ennigrou and Ghédira 2008) propose a Multi agent approach
based on a new local diversification technique for FJSP. This
work has been used by Henchiri and Enngirou in (Henchiri
and Enngirou 2013) to investigate a multi-agent model based
on the hybridization of TS and PSO. This is called Flexible
Job Shop Multi-Agent Tabu Search Particle Swarm Opti-
mization (FJS MATSPSO). The implemented model is com-
posed of Resources agents responsible for a local optimiza-

tion process based on TS and an Interface agent responsible
for a global optimization based on PSO.

Finally, and as it is reported in all the previously cited
studies, different meta-heuristics are applied to solve the
FJSP problem. The challenge is always to have the appro-
priate meta-heuristic capable for better solving this problem.
A comparative study between these different meta-heuristics
has shown that genetic algorithms and particle swarm opti-
mization are the most effective in terms of the results perfor-
mance quality

Problem formulation

There are two kinds of FJSP, Total FJSP (T-FJSP) and Partial
FJSP (P-FJSP). For the T-FJSP, each job can be operated on
every machine from the set of machines M (Li et al. 2010)
while for the P-FJSP, each operation can be processed on one
machine of subset of M (Liu et al. 2007).

We define the flexible job shop scheduling problem for-
mally with the following definitions:

• J = {J1, J2. . ..Jn} is a set of n independent jobs to
be scheduled. Each job Ji consists of a predetermined
sequence of operations. Oi j is the operation j of job Ji .

• M = {M1, M2, . . . , Mm} is a set of m machines. Each
machine can process only one operation at a time. Each
operation can be processed without interruption during
its performance on one of the set of machines. We denote
with Pi jk the processing time of operation Oi j when exe-
cuted on machine Mk . All machines are available at time
0.

Constraints

The constraints are rules that limit the possible assignments
of the operations. In our case, the following constraints are
considered:

• Jobs are independent and no priorities are assigned to any
job type.

• Each machine can process only one operation at a time.
• Job pre-emption or cancellation is not allowed.
• All jobs are simultaneously available at time zero.
• The predetermined sequence of operations for each job

forces each operation to be scheduled after all predecessor
operations (precedence/conjunctive constraint).

• There are no precedence constraints among operations of
different jobs.

• After a job is processed on a machine it is transported to
the next machine immediately and the transportation time
is negligible.

• Breakdowns are not considered.
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Objective function

The optimization is expressed by a function that shall min-
imize or maximize a given criteria. Most of the reported
research focused on single objective optimization cases. For
these cases, the objective is to find a schedule that requires
a minimum time to complete all operations. This minimum
time is called the minimum makespan time. We may have to
optimize additional objectives, such as earliness and tardi-
ness of jobs, minimizing the total workload, and minimizing
the workload of the most loaded machine. These different
cited objectives can be combined to implement a multi objec-
tive optimization. In the literature, many papers are written on
multi-objective optimization for FJSP (Binh and Cing 2008;
Motaghedi-larijani et al. 2010). In this paper, we are inter-
ested in a single objective optimization case that consists in
minimizing the makespan denoted as Cmax . The makespan
value is calculated as follows:

Cmax = max ti j

where ti j is the completion time of operation Oi j .

Particle swarm optimization

Method description

The Particle Swarm Optimization algorithm was introduced
in 1995 by Kenney and Eberhart. It was inspired from the
social behavior of animals living in swarms, such as flocks
of birds (Kennedy and Eberhart 1995). The PSO algorithm
is initialized with a population of particles; each of the par-
ticles represents a candidate solution to a problem and has
three main attributes: the position in the search space xi(t),
the current velocity vi(t) and the best position ever found by
the particle during the search process x∗

i (t). The principle of
the algorithm is to move these particles to find optimal solu-
tion. The search trajectory of a particle is regulated according
to the flying experience of its own and its neighboring parti-
cles. During the search, each particle updates its velocity and
position by the following equations (Li et al. 2010) :

vi (t + 1) = w ∗ vi (t) + c1 ∗ [
x∗

i (t) − xi (t)
]

+ c2 ∗
[
x∗

g (t) − xi (t)
]

(1)

xi (t + 1) = xi (t) + vi (t + 1) (2)

where x∗
i (t) is the best position of each particle which repre-

sents the private best objective (fitness) value so far obtained,
and x∗

g(t) is the global best particle which denotes the best
position among all particles in the population. w is the inertia
weight, which is used to maintain the particle; c1 and c2 are
random numbers between [0,1].

Parameters selections

The PSO algorithm includes some tuning parameters that
greatly influence the algorithm performance. Despite recent
research efforts, the selection of the algorithm parameters
remains empirical to a large extent. Several typical choices of
the algorithm parameters are reported in (Trelea 2003; Clerc
and Kennedy 2002). Ioan Cristian Trelea in (Trelea 2003)
propose parameter selection guidelines in order to guaran-
tee the optimal convergence. There are many several kinds
of coefficient adjustments. The one used in this paper was
developed by Kennedy (Kennedy 1999) and involves the con-
striction factor presented in the equation below:

k = 1 − 1

α
+

√|α2 − 4∗α|
2

where α = c1 + c2 > 4; c1 = 2; c2 = 2, 1
So the equation of velocity becomes:

vi(t + 1) = k ∗
(

vi(t) + c1 ∗ [
x∗

i (t) − xi(t)
]

+ c2∗
[
x∗

g(t) − xi(t)
])

(3)

Encoding particle

In order to successfully apply PSO for solving the FJSP prob-
lem, appropriate representation of particles is of a big impor-
tance. In this context, (Jia et al. 2007) divided the position
of a particle as well as the velocity into two vector parts:
Process [ ] and Machine [ ].

In this improved representation, Machine [ ] vector rep-
resents the machines assigned to operations and Process[]
defines the sequence of operations. Each component in
Process[ ] vector denotes an operation of job j , which is
j a natural number less than n. The sequence of the com-
ponents determines the order of operations for the different
jobs. Each component in vector Machine[], is a natural num-
ber m that denotes the number of a selected machine that
processes the corresponding operation in Process[]. The two
Process and Machine vectors have the same size which is
equal to the total number of operations.

In Fig. 1 we give a possible encoded particle for a 4*5
FJSP instance.

In Fig. 1, the total number of operations is 12, so the par-
ticle is denoted as two vectors, each with 12 dimensionali-
ties. The number in Process[ ] denotes the number of a job,
and the same job numbers in different positions represent
the operation order of this job. The number of occurrence of
each number corresponds to the total number of operations
of this job (Job 1: 3 operations, Job 2: 3 operations, Job 3: 4
operations, Job 4: 2 operations). So in this representation the
feasibility is considered automatically.
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 Process :      1      3     2     3      1       3         1        2         4       4      2       3 

1st operation of job 2      2nd operation of job 2      Third operation of job 2 

Machine:     3     2     5     3     3      5         5         2          1        4       1        3 

Num machine 5                     Num machine 2                 Num machine 1 

Fig. 1 Encoding particle scheme

In the PSO, the diversification of the population is based in
general on the neighborhoods topologies described in the fol-
lowing sub-section. However, to further improve this diver-
sification of the algorithm, we impose a distance between
particles positions as defined by Clerc in his paper (Clerc
2004).To diversify and to more explore the research space,
we impose that there is a minimum distance between solu-
tions. Let x1 and x2 be two positions. The distance between
these positions is defined by d(x1, x2) = x1 − x2. If the
distance between the current position and the new position is
less than a defined small epsilon, this means that it does not
move much and it goes exactly at near the same position.

Initialization

The quality of the initial population affects to a certain extent
the quality of the solution or the convergence speed of the
population. So, how to produce a better initial population
quality becomes a critical step in the first section.

The initialization process can be divided into two stages
(Li et al. 2010) machine assignment initialization and oper-
ation sequence initialization. Several approaches for the ini-
tialization of machine assignment and sequence initialization
are developed.

In this paper we use three approaches for the selection of
the initial population:

• Random rule (Li et al. 2010): which consist to select a
random number of jobs and machines for every operation.

• Approaches by localization of Kacem et al. (2002): we
select randomly a number of jobs. Then we choose the
machine which has a minimum processing time for the
first operation to the selected job. Next we apply the
approach by localization of Kacem et al (Kacem et al.
2002), which consists in finding the machine with the
minimum processing time for each operation, for the rest
of operations. Then select the global minimum process-
ing time fixing that assignment, and then to add this time
to every subsequent entry in the same column (machine
workload update),

• Modified approach “MMkacem”: We select randomly a
number of jobs and then we search for the machine that
has the minimum processing time in the processing time
table.

Neighborhoods topologies

Another important issue that deserves attention, is the com-
munication topology used to spread information inside the
swarm. Many topologies have been proposed and improved
to accelerate the convergence process (Bastos-Filho et al.
2009). The two most commonly used methods are known as
gbest and lbest.

In the gbest or the star topology, particles can share infor-
mation globally through a fully-connected structure. This
topology uses a global neighborhood mechanism where the
trajectory of each particle’s search is influenced by the best
point found by any member of the entire population (Kennedy
1999).

On the other hand, there are topologies based on a local
neighborhood, called ring or lbest (Kennedy and Mendes
2003). In this approach, the particles only share information
with their direct neighbors defined based on indexes.

Some others topologies have been proposed to balance the
extreme behavior of the gbest and lbest approaches, such as
the Von Neumann topology where particles are connected by
a grid creating a social structure.

Recently, a dynamic communication topology was pro-
posed to improve the PSO degree of convergence focus-
ing on the distribution of the particles in the search space
such us Dynamic ring and Dynamic Clan (Bastos-Filho et al.
2009; Wang and Xiang 2008). We have tested these topolo-
gies cited below and we have not found any approach that
is better in comparison the others in terms of quality of the
solution.

Algorithm description

In a previous study (Nouiri et al. 2013), we proposed a Par-
ticle swarm optimization (PSO) to solve deterministic FJSP
and the obtained results show that the approach is very effi-
cient in solving these problems. According to the above
description, we give the PSO algorithm for FJSP as follows:

Step 1 : initialize all parameters : Swarm size, number of
generation Max_Iteration, c1, c2, wmax, wmin
Step 2 : Generation 0

- Initialize swarm : the population of particles: 60 %
MMKacm, 20 % KacemHammadi, 20 % random,
- evaluate each particle : compute the fitness value
Cmax .
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- initialize pBestParticule of each particle by a copy
of itself.
- initialize gBestParticule as the global particle with
the minimal fitness value in the current population.

Step 3 : While (generation < Max_Iteration) do

- generation = generation + 1.
- Update the velocities and positions for each particle
i by Eqs. (2) and (3)
- update fitness value for each particle.
- update pbestParticule for each particule.
- update global solution gbestParticule.
End while

Step 4: output result gBestParticule (the order of dif-
ferent operations of different jobs, machine assignment,
fitness value).

Distributed approche using multi-agent system

The high combinatorial complexity of the flexible job shop
problem makes it hard to find the optimal solution within
a reasonable time in most cases. The multi-agent optimiza-
tion method can reduce the combinatorial complexity of the
problem using task decomposition and real-time distribution
(Asadzadeh and Zamanifar 2010).

A multi-agent system is an artificial system composed of a
population of autonomous agents, which cooperate with each
other to reach common objectives, while simultaneously each
agent pursues individual objectives (Chen et al. 2004).

Agents and multi-agent systems have wide application in
parallel and distributed systems. One of the important fea-
tures of agents is their capability in parallel implementing
of meta-heuristics. Also, among the important advantages of
any multi-agent method is to allow one agent to solve sub-
problems locally and to propose a global solution as a result
of interactions between the different agents. We used this
feature in our approach and propose a parallel and distrib-
uted model for the flexible job shop scheduling problem. We
developed a multi-agent optimization system based on PSO
namely Muti-Agent Particle Swarm Optimization MAPSO
containing some agents with special actions.

In this section we introduce two agent-based methods and
briefly describe their structures.

First multi agent PSO model (MAPSO1)

In order to compare the execution time between PSO and
Multi agent PSO, we first propose a simple architecture based
on the PSO proposed in this paper. Our experiments are con-
centrated on evaluating the makespan and the CPU time. In
this model, each agent has its own acquaintances (the agents

that it knows and with which it can communicate), a local
memory composed of its static and dynamic knowledge and
a mailbox in which it stores the messages received from the
other agents. We can describe them as follows.

Execute agent (EA)

An optimization process based on particle swarm optimiza-
tion method is located in the Execute Agent. This agent cre-
ates a sub-population in the first stage with a specific ini-
tialization method and then runs the PSO algorithm. In the
second stage, they transmit the best particle found to syn-
chronization agent (SA).

According to the implemented initialization methods, we
define three Execute Agent (EA). Each EA create its own
population with a specified initialization method and then
runs PSO algorithm (see section “Particle swarm optimiza-
tion”).

Synchronization agent (SA)

The acquaintances of a Resource agent are composed of all
existing agents in the system. This agent is responsible for
triggering the collection phase (receiving the best particle
from each Execute agent EA) and then determines the global
best particle.

The architecture of our method with the different layers
are shown in Fig. 2.

Second multi agent PSO model (MAPSO2)

In the first MAPSO1 architecture, the Synchronization Agent
is not of a big use as it is absent throughout the optimization
phase and will be performing only in the collect phase (recep-
tion best particle from each EA).In addition, we are targeting
the better suitable Multi agent PSO architecture for embed-
ded system in terms of the number of agents, the role of each
agent, the effects of migration policy etc. So we proposed
a second MAPSO which has a more complex architecture.
This multi agent MPPSO model is inspired from (Asadzadeh
and Zamanifar 2010).

The layers of the proposed MAPSO2 agent-based archi-
tecture for FJSP are shown in Fig. 3.

In this model, each agent is developed for a special pur-
pose. The description of each agent is as follows:

Boss agent (BA)

The acquaintances of BA are composed of the Synchroniza-
tion Agent (SA). BA has the responsibility of creating the
initial population for the PSO algorithm and of the global
optimization process.
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Fig. 2 Architecture of the proposed multi agent MAPSO1

The BA sends the initial population to the synchronizer
agent SA and then waits until it receives the best particle
swarm. Finally, The BA executes the PSO algorithm and
shows the best particle that has the minimum makespan.

Synchronization agent (SA)

The acquaintances of SA are composed of all agents existing
in the system. This SA agent divides the population received
from the BA in sub-populations and sends them to the Exe-
cute Agent (EA). This agent is responsible also for triggering
the migration phase (coordinating the migration between the
EAs described hereafter) and the collection phase (receiving
the best particle from EA).After receiving all best particles,
the SA sends the global best swarm among the best particles
to the BA.

Execute agent (EA)

This agent runs, in the first stage, the PSO algorithm with
a subpopulation received from the synchronizer SA agent.

In the second stage, they awaits the start of the migration
phase, then at the beginning of this phase, they transmits
a sub-swarm of a certain migrant best particle (defined in
advance) to its neighbors according to a the migration pol-
icy. The EA receiver agent replaces a certain initial particles
in their swarm by the received particles and they runs the
PSO algorithm with a new sub-population. Finally, at the
collection phase, they transmit the best particle found to the
SA. The number of Execute Agent can be configured accord-
ing to the number of machines of the production unit. In our
architecture, we define two Execute EA agents.

Migration policy

Communication between sub-populations of EAs is carried
out by exchanging migrants. Each EA executes the PSO algo-
rithm on its sub-population, and then sends a message to
the SA informing it of the end of its execution. The SA is a
synchronization agent, which coordinates migration between
sub-populations of EA agents. After receiving a message
from all the EAs, the SA broadcasts a back to all of the
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Fig. 3 Architecture of the
proposed multi agent MAPSO2

EA agents notifying them for the start of the migration phase
where each EA exchanges some of its best particles with
its neighbors. Particles with low fitness value in the sub-
population are replaced with the best particles of neighbors.

Experimental results

To test the effectiveness and performance of the PSO algo-
rithm, first we carried out experiments with three different
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Fig. 4 The Gantt chart of instance 1 (4 jobs * 5 machines)

benchmark FJSP instances: two FJSP instances with total
flexibility, and one with partial flexibility. The characteristics
of these instances are available in (Jia et al. 2007; Motaghedi-
larijani et al. 2010). Each instance can be characterized by
number of jobs (n), number of machines (m), and the related
operations Oi j associated to each job i . Each instance is run
for 20 times and all the results are presented in next section.
More experiments are then performed on large instances from
Brandimarte (Brandimarte 1993).

The Flexible Jop Scheduling Multi Agent PSO (FJS
MAPSO) was implemented in Netbeans with Java language.
For the development of the multi-agent system we choose
JADE (Java Agent Development framework) which is a free
and an open source agent development platform. This mid-
dleware facilitates the creation of agents and their commu-
nication using message passing. The implementation has
been performed on a machine based on Intel processor
“Core2Duo” clocked at 2.0 GHz and having 3070 MO of
memory.

PSO results using Kacem instances (Kacem et al. 2002)

Test on 4 × 5 problem

First, a small scale instance taken from (Motaghedi-larijani
et al. 2010) is used.

The PSO parameters are as follow: swarmsize=100,
Max_Iteration=200.

The schedule’s Gantt chart representation corresponding
to the best obtained solution is shown in Fig. 4.

Comparing the results of our algorithm with some other
well known reference algorithms is shown in Table 1. This
table clearly shows the outperformance of our algorithm for
small scale instances.

Where:

Table 1 Compared results on problem 4 * 5

Algorithm Makespan

Our PSO 11

AL+GA 16

PSO+SA 11

GA 13

GA+HC 12

‘AL+GA’ refers to (Kacem et al. 2002), ‘PSO+SA’ refers
to (Xia and Wu 2005), ‘PSO+TS’ refers to (Zhang et al. 2009)
and ‘GA+HC’ refers to (Motaghedi-larijani et al. 2010).

Test on 10 × 10 problem

To evaluate the efficiency of the proposed PSO algorithm
for a middle scale instance, a 10×10 problem taken from
(Jia et al. 2007) is tested. The PSO parameters are as follow:
Swarm_Size=500, Max_Iteration=500.

The schedule’s Gantt chart representation corresponding
to the obtained solution is shown in Fig. 5. The comparison
of our proposed algorithm with other reference algorithms is
shown in Table 2.

Where
‘Temporal decomposition’, ‘Classic’ GA’ and ‘Approach

by Localization’ refers to (Kacem et al. 2002), ‘PSO+SA’
refers to (Xia and Wu 2005), ‘PSO+TS’ refers to (Zhang
et al. 2009) and ‘GA+HC’ refers to (Motaghedi-larijani et al.
2010).

Test on 8×8 problem with partial flexibility

Finally, a middle scale instance problem 8×8 with partial
flexibility taken from (Motaghedi-larijani et al. 2010) is
experimented.

The PSO parameters are as follow: Swarm_Size =500,
Max_Iteration =500.

The schedule’s Gantt chart representation corresponding
to the obtained solution is shown in Fig. 6.

Comparing in this case the obtained solution with the ref-
erence algorithms is shown in Table 3.

Where:
‘Classic GA’ and ‘AL+CGA’ refers to (Kacem et al. 2002),

‘PSO+SA’ refers to (Xia and Wu 2005), ‘PSO+TS’ refers to
(Zhang et al. 2009).

Finally, all these obtained results clearly prove that our
developed PSO is effective and efficient to solve flexible job-
shop scheduling problem without any hybridization. How-
ever it is known that PSO method lacks from premature con-
vergence and for this reason most of the previous reference
papers are using the PSO by hybridization with other meth-
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Fig. 5 The Gantt chart of
instance 2 (10 jobs * 10
machines)

Table 2 Comparison of results on problem 10 * 10

Algorithm Makespan

Our PSO 8

Temporal decomposition 16

Classic GA 7

Approach by localization 8

PSO+SA 7

PSO+TS 8

GA+HC 8

Fig. 6 The Gantt chart of instance 2 (8 jobs * 8 machines)

ods, we have a proof here that an appropriate implementation
of the PSO can lead to good results without any hybridization.

PSO results on brandimarte instances (Brandimarte 1993)

To better confirm and strongly validate our PSO approach,
additional experiments are performed using a decent num-
ber of problem instances from the widely utilised Brandi-
marte benchmark (Brandimarte 1993). The obtained results
are shown in Table 4 and compared with other methods from
the litterature.

Where:
‘TS’ refers to (Brandimarte 1993), ‘PSO’ refers to (Girish

and Jawahar 2009), ‘PSO + TS’refers to (Li et al. 2010) and
‘MATSLO’ refers to (Henchiri and Enngirou 2013)

Mk1, Mk2,.., Mk10 are the first ten instances proposed by
(Brandimarte 1993). For these instances, the number of jobs
varies from 10 to 20, the number of machines from 6 to 15
and the number of operations from 58 to 232.

As it is reported in Table 5, our PSO can achieve better
results for Mk2, Mk5, Mk6, Mk8 and Mk9 instances. How-
ever, for the remaining Mk1, Mk3, Mk4, Mk7 and MK10
instances the obtained performance of our algorithm is com-
parable to the best achievable result from any of the other
reference methods. This is due the premature convergence of
the PSO. In addition, and in comparison with the cited refer-
ences, our approach has a lower computational complexity
and is much more easer to implement. this in line with our
objective to not only get the best makespan, but to make also
the approach as simpler as possible for future implementa-
tion on embedded systems capable of making real time deci-
sions according to the state of resources and any unplanned
or unforeseen events.
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Table 3 Comparison of results on problem 8 * 8

Algorithm Makespan

Our PSO 17

Classic GA 16

AL+CGA 16

PSO+SA 15

PSO+TS 15

Table 4 Comparison of results on Bandimarte instances

Instance TS PSO PSO+TS MATSLO Our PSO

MK1 42 40 40 40 41

MK2 32 27 27 32 26

MK3 211 204 204 207 207

Mk4 81 62 63 67 65

Mk5 186 178 173 188 171

Mk6 86 78 65 85 61

Mk7 157 147 145 154 173

Mk8 523 523 523 523 523

Mk9 369 341 331 437 307

Mk10 296 252 223 380 312

Better results compared to other methods are in bold

Table 5 Comparison between PSO, MAPSO1 and MAPSO2

Instance Makespane PSO CPU
time (s)

MAPSO1 CPU
time (s)

MAPSO2 CPU
time (ms)

4 * 5 11 0.353 0.332 17.849

10 * 10 8 7.316 7.307 37.816

8 * 8 17 5.698 5.589 26.984

Experimental results for the distributed approaches

To illustrate the performance of the proposed Multi-agent
system MAPSO1 and MAPSO2 models, test experiments
are carried out on problem instances from (Jia et al. 2007;
Motaghedi-larijani et al. 2010). The result performance para-
meters are concentrated on evaluating the makespan with the
CPU processing time of each approach using the same config-
uration. The obtained results are shown in Table 5. The pro-
posed PSO, MAPSO1 and MAPSO1 models are run 20 times
for each problem and for all these cases the same makespan
solution is obtained for all the PSO, MAPSO1 and MAPSO2
approaches, but with a specific CPU processing time for each
case.

As it is shown from Table 5, the MAPSO1 is faster than
the classical PSO for all the problem instances studied. This
is due to the parallel distribution of the PSO processing to
the different Execute Agents such that each sub-population
is evolving separately.

pgFor the proposed MAPSO2, the overall processing time
is longer than the Centralized PSO as this is including the wait
times required for all the Execute Agents (EA) to synchro-
nize their activities. However, the total job is divided among
all the EA agents and in this case each agent will be individ-
ually performing lower processing. For example, the Syn-
chronization Agent SA divides the swarm received from the
BA into two sub-populations and sends them to the different
EA agents for processing. The size of sub-population noted
sub-swarm of each agent is equals to the half of the swarm
size and consequently lower processing load is required to be
performed by each agent element. This is a very important
feature in case we are targeting a PSO implementation on
multiple embedded systems having each a limited memory
and processing power resources. In addition, the advantage of
MAPSO2 model is that all agents are integrated on the opti-
mization phase, with also the contribution of the migration
policy that is a recently used method to guide the search into
new areas of search space in order to maximize the chances
for the system to converge more easily towards the best par-
ticle solution.

Conclusions

This paper presents a particle swarm optimization algorithm
to solve the FJSP problem. The experimental results indi-
cate that the algorithm is very effective and can play a def-
inite part in directing real production. However, the indus-
try and manufacturing systems are characterized by disrup-
tions, unplanned events and unforeseen incidents that can
happen at any time, such as machine breakdown, mainte-
nance, break connection, etc. Our aim in this paper is not
only to implement a fast solution, but an efficient algorithm
that can be easily reconfigured for an embedded system suit-
able for an unpredictable environment. For that aim, we dis-
tribute the PSO into a multi agent system (MAS) to decen-
tralize decisions and to make such that each entity will par-
ticipate in the resolution of the whole problem. Two MAS
approaches that distribute the PSO in a multi agent system
are proposed. The two MAS architectures and the centralized
PSO are tested and compared using reference instances. The
objective is to choose the best MAPSO architecture of that
can be easily reconfigured for an embedded system capa-
ble of making real time decisions according to the state of
resources and to unplanned events. An interesting direction
for future researches is to develop an embedded MAPSO
in which each entity will participate in the resolution of the
problem. As the problem resolution will be distributed on
multiple embedded systems, it is important to control the
energy consumption while guaranteeing the quality of the
solution.
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