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Abstract—This paper introduces the Thief Orienteering Prob-
lem (ThOP), a multi-component problem that combines two
classic combinatorial problems: Orienteering Problem (OP) and
Knapsack Problem (KP). In this problem, a person (called the
thief) carries a capacitated knapsack and has a time limit to
collect items distributed in a set of cities. The thief has fixed start
and end points, begins his journey with the knapsack empty, and
travels with speed inversely proportional to the knapsack weight.
While there is time, the thief may visit the cities and collect
items. The aim of the problem is to determine the thief’s route
and items to collect in order to maximize the knapsack profit.
We formally describe the ThOP by a mixed integer non-linear
programming formulation and present two heuristic approaches
based on Iterated Local Search (ILS) and Biased Random-Key
Genetic Algorithm (BRKGA) metaheuristics. Our results showed
that BRKGA outperformed ILS for a large majority of instances.

Index Terms—Orienteering problem, Knapsack problem, Trav-
eling thief problem, Multi-component problems, Mathematical
formulation, Heuristic algorithms.

I. INTRODUCTION

We introduce here the Thief Orienteering Problem (ThOP),

a variation of the Orienteering Problem inspired by the Trav-

elling Thief Problem (TTP). The TTP was proposed recently

by Bonyadi, Michalewicz and Barone [1]. It is a combination

of two classic well-known problems: the Travelling Salesman

Problem (TSP) and the Knapsack Problem (KP). The main ar-

gument presented by the authors for proposing the TTP is that

the benchmarks of classic NP-hard problems do not reflect the

main features of real-world problems, so the effective meta-

heuristics we have for those benchmarks are not necessarily

effective for real-world problems. The authors claim that the

complexity of real-world problems is not only due to their size,

but mainly because they are a combination of two or more

optimization sub-problems, and because those sub-problems

are interdependent. This means that the solution of a sub-

problem affects the quality of the solution of the others, then

they should not be solved independently. In the TTP, a person

(the thief) must visit every city of a set of n cities (the TSP

component) and during the visit may collect items located on

those cities to fill his knapsack (the KP component). However,

as items are collected, the knapsack becomes heavier, and the

thief walks more slowly. The knapsack was rented, and the

price to pay is proportional to the time of rent. The thief

must then maximize the total profit of the items collected and

also minimize the total time of the route. The authors show

that the optimal solution of a TTP instance may not include

the optimal solution of the KP component neither the optimal

solution of the TSP component, proving the interdependence

of the combination.

Since the TTP was introduced, a benchmark of 9,720

instances was made available [2], and several heuristics were

proposed [3]–[5]. A comparative study of 21 heuristics was

made in [6] to build an algorithm that selects the most suited

for each type of instance, and an exact algorithm was proposed

in [7] to study the quality of the available heuristics for

small instances. The TTP was also subject of competitions on

leading events of Computational Intelligence and Evolutionary

Computation [8], [9]. The TTP has shown to be a challenging

problem, although simple to define and built upon well-known

problems.

Inspired by the TTP, we introduce here another multi-

component problem, the Thief Orienteering Problem (ThOP),

built on the Orienteering Problem (OP) instead of the Traveller

Salesman Problem. The Orienteering Problem is based on a

sport game of orienteering [10]. In the game, the competi-

tors start on a given point, walk through a region visiting

checkpoints, and have to return to a control point within

a given time. They have a map of the region and is up

to them to decide the route through the checkpoints based

on their navigation skills and fitness level. In the OP each

checkpoint has a score, then the objective is to find the route

which maximizes the total score. i.e., whose sum of scores

of the checkpoints visited is maximum. The OP has been

extensively investigated in the literature and has many variants.

For example, in the Team Orienteering Problem (TOP), a set

of competitors work together as a team, and the score of the

team is the sum of the scores of the checkpoints visited by

any member of the team [11]. There is a survey published

in 2011 comparing all approaches already proposed up to that

moment [12] . In the ThOP variant, a competitor does not score

points by just visiting a checkpoint, but has to collect items

at the checkpoints and carry them until the end point. Each

competitor has a knapsack with a limited capacity to carry

the items. Moreover, the speed of the competitor is directly

affected by the weight of the knapsack. As in the TTP, as items
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Fig. 1: ThOP example.

are collected, the knapsack becomes heavier, and the speed of

the competitor decreases. More formally, let vmin and vmax

denote the minimum and maximum speed of the competitor,

when the knapsack of capacity W is respectively full and

empty. The speed v of the competitor for a knapsack of weight

w, 0 ≤ w ≤W is given by v = vmax−w ·(vmax−vmin)/W .

Notice that the value (vmax − vmin)/W is constant and

represents the decrease in the speed for each unit of weight

of the knapsack.

Figure 1 shows an example with 4 points, the start point

(1) and the end point (4) with no items, and 2 checkpoints

containing some items. The distances from each pair of points

are given in the edges and for each item its profit and weight

are shown. Item with ID = 1, for example, is located at

checkpoint 2, has a profit of 20, and weight 2. For this

example, consider vmin = 0.1, vmax = 1, W = 3 and a

time limit T = 75 to arrive at the end point.

Although a ThOP solution is composed by a route and a

set of items collected along the route, it may be represented

by only a sequence of items, as the route may be derived by

the location of the items. Collecting the items 〈1, 4〉 has a

total profit of 20 + 40 = 60. It is a feasible solution, as the

total weight of these items is 3 and the total walk time is 75,

satisfying the limits W and T . For the total time we have:

• walk from the start point to point 2 at maximum speed:

time is the distance divided by the speed, 5/1.0 = 5;

• at point 2 collect item 1: the speed decreases to 0.4;

• walk from point 2 to point 3: walk time is 8/0.4 = 20;

• at point 3 collect item 4: the speed drops to 0.1;

• walk from point 3 to the end point: walk time 5/0.1 = 50.

The solution 〈4, 1〉 has the same items, collected in a

different order, and is unfeasible: the total walk time is 77.43,

which is over the limit T . The optimal solution for this

example is to collect 〈3〉: profit 100, walk time 56. For T = 20
the optimal solution would be 〈4, 5〉: profit 80, walk time

18.5. Notice that for this last case the optimal solution for

the knapsack component would be unfeasible for the ThOP.

The ThOP is similar to the TTP, but we point out two

main differences: there is no need to visit all the points, and

there is an additional constraint, the time limit to arrive at the

end point. The last one is a significant difference, because as

long as a set of items satisfies the capacity constraint of the

knapsack, any permutation of the cities is feasible for the TTP,

the difference being the time to travel the route, which impacts

the objective function (the price to pay for the knapsack rent).

But not for the ThOP, because the travel time is a constraint,

as illustrated in the previous example. Due to that difference,

the adaptation for the ThOP of methods proposed for the TTP

is not trivial. One has to take into account the feasibility of

the route. Then, instead of adapting the methods, we propose,

as first heuristics for the ThOP, two simple heuristics, that are

detailed in Section III.

An immediate application is in reverse logistics, where

a company must collect goods from customers for remanu-

facturing or proper disposal. For each product a benefit is

associated. As the vehicle used to collect the products has

limited capacity and the driver’s working day must be within

a limited number of hours, the customers and the items must

be chosen properly. The new feature, not present in most works

of reverse logistics neither in general transportation problems,

is that the speed of the vehicle decreases as it becomes heavier,

consequently the time to travel between customers and from

them to the depot increases along with the route as items are

collected. A dynamic change in the travel time (and/or speed)

is considered in time-dependent vehicle routing problems,

when congestion and rush hours are taken into account. Here,

instead, the change is based on the weight of the load, which is

undoubtedly non-linear in real-word, as it depends on several

aspects, but can be approximated as linear in some cases in

order to be computational tractable.

Besides proposing this new multi-component problem, we

propose a method for generating instances for ThOP based

on instances for the TTP along with a benchmark with 432

instances, and propose two different heuristics based on the

metaheuristic Iterated Local Search (ILS) and on the Biased

Random-Key Genetic Algorithm (BRKGA) as starting meth-

ods to deal with the problem.

This paper is organized as follows: in Section II we formally

describe the problem and give a non-linear mathematical for-

mulation; in Section III we describe in details the two heuris-

tics proposed; then, in Section IV we report computational

experiments and analyze the performance of the proposed

heuristics; finally, in Section V we present our conclusions and

give suggestions for further investigations. In the following we

use competitor and thief as terms interchangeable, the same

for checkpoints and cities, and collect and steal an item.

II. FORMAL DEFINITION AND MATHEMATICAL

FORMULATION

For the ThOP, we have a set of n points: 1 is the start

point, n is the end point, and the remaining (2, . . . , n−1) are

checkpoints. At each checkpoint there is one or more items,

and for each item i we have its profit pi and weight wi. We are

also given the capacity W of the knapsack, the time limit T to

reach the end point, the thief’s maximum and minimum speed,

respectively vmax and vmin, and the distance dij between any

pair of points i and j. The objective is to find a path from
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the start point to the end point filling the knapsack with items

carefully chosen at the checkpoints visited on the way, in order

to maximize the total profit of knapsack, provided that the

capacity of the knapsack is not surpassed and the total walk

time is within the time limit.

The following mathematical formulation contains all char-

acteristics of the problem. In order to properly describe it, let

Si be the set of items located at vertex i. For each s ⊆ Si, w
s
i

represents the total weight of the items contained in s while

psi is the total profit of this subset. Moreover, let the constant

ν = (vmax − vmin)/W be the lost in speed for each unit of

weight inside the knapsack, and M ′ and M ′′ be sufficiently

large constants. The decisions variables are:

• xs
ij : binary variable that gets 1 if the thief crosses the

arc (i, j) after collecting the items of subset s ⊆ Si and

0 otherwise.

• qi : variable that reports the weight of the knapsack after

collecting the items at city i.
• ti : variable that informs the thief’s arrival time at city i.

max
n−1∑
i=1

n∑
j=2

∑
s⊆Si

psi · xs
ij (1)

n∑
j=2

x∅

1j = 1 (2)

n−1∑
i=1

∑
s⊆Si

x s
in = 1 (3)

n−1∑
i=1

∑
s⊆Si

x s
ij −

n∑
i=2

∑
s⊆Sj

x s
ji = 0 ∀j = 2..n-1 (4)

qj ≥ qi +
n∑

j′=2

∑
s⊆Sj

ws
j · x s

jj′

−M ′ ·
⎛
⎝1−

∑
s⊆Si

x s
ij

⎞
⎠

∀i = 1..n,
∀j = 1..n

(5)

tj ≥ ti +
dij

vmax − ν · qi

−M ′′ ·
⎛
⎝1−

∑
s⊆Si

x s
ij

⎞
⎠

∀i = 1..n,
∀j = 1..n

(6)

x s
ij ∈ {0, 1}

∀i = 1..n,
∀j = 1..n,
∀s ⊆ Si

(7)

0 ≤ qi ≤W ∀i = 1..n (8)

0 ≤ ti ≤ T ∀i = 1..n (9)

The objective (1) is to maximize the total profit of items

collected. The thief must start at city 1 carrying an empty

knapsack (2) and reach city n (3), visiting any other city

on the way (4). After visiting a city, the thief must leave it

after collecting a subset of its items (4), which consequently

increases the weight of his knapsack (5) and decreases his

speed accordingly, affecting the time to reach the next city (6).

The weight of the knapsack and the total walk time should be

always within the given limits (8)-(9).

Notice that this set of constraints is enough to avoid sub-

cycles on the route, as (4) assures the route flow and (5)-

(6) guarantee that the knapsack weight and the route time is

increasing along the route.

Although complete, the formulation as it is cannot be used

to solve the problem due to its complexity: the number of

variables is exponential in the number of items of a given city,

because of the number of possible subsets; and constraint (6) is

non-linear, the distance is divided by a continuous variable. We

then develop some heuristics, leaving an improved mathemat-

ical formulation and exact algorithms for future investigation.

III. HEURISTIC SOLUTIONS

In this section, we describe two heuristic algorithm ap-

proaches based on the metaheuristic Iterated Local Search

(ILS) and on the Biased Random-Key Genetic Algorithm

(BRKGA) in order to obtain high quality solutions. The

proposed heuristics and their components are detailed below.

A. Solution representation and evaluation procedure

In order to facilitate the exploration of the feasible region,

we have decided to represent a solution s of the problem by a

permutation π = 〈π1, π2, · · · , πm〉, where m is the number of

items available in the cities.

The permutation defines a priority order for the items to

be stolen by the thief. From the permutation π, Algorithm 1

describes how the route R traveled by the thief is constructed

and which items will be stolen and stored in the knapsack K.

Initially, the route R and knapsack K are empty. For each item

πi, following the order defined by the permutation, we first

verify if after including the item πi the solution remains viable,

i.e., if the capacity of the knapsack will not be extrapolated

and if the remaining time will be enough for the thief to arrive

in the final city (city n). If any of the above constraints is not

satisfied, the thief will not steal item πi. Otherwise, the thief

will steal item πi. To steal item πi, first the thief needs to

travel to the city where item πi is located, which we represent

by CITY(πi). If the thief has already stolen another item in

the city CITY(πi), we remove from route R the previous

occurrence of CITY(πi), and add CITY(πi) at the end of

route R. In this way, all items stolen in city CITY(πi) will

be inserted into the knapsack only on the last visit to city

CITY(πi), in order to minimize the time spent by the thief.

B. Local search

Algorithm 2 describes a local search procedure used as

subroutines in the main algorithms proposed for the ThOP.

It consists of exploring the neighbors of a current solution in

order to find a neighbor solution of better quality. If a better

solution is found, this solution becomes the current solution,

and the process is repeated until it is not possible to improve

that solution, i.e., until the search reaches a local optimum.
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Algorithm 1 Evaluation procedure

1: procedure f ( s )

2: Let π be the permutation of m items represented in s
3: R ← K ← ∅

4: for i← 1 to m do
5: if stealing πi does not violate any constraint then
6: if CITY(πi) ∈ R then
7: remove city CITY(πi) from route R
8: end if
9: add city CITY(πi) at the end of route R

10: add item πi to the collection plan K
11: update travel time and knapsack capacity

12: end if
13: end for
14: return total profit value of K
15: end procedure

Algorithm 2 Local search procedure

1: procedure LOCALSEARCH ( s )

2: s′ ← s
3: loop
4: get the best neighbor solution s′′ ∈ N (s′)
5: if f(s′′) > f(s′) then
6: s′ ← s′′

7: else
8: return s′

9: end if
10: end loop
11: end procedure

In our local search procedure, we use a simple neighborhood

structure that consists of exchanging two positions of the

permutation π of a solution s. The set N (s) represents all

neighbors of a solution s.

C. Iterated local search algorithm

Iterated Local Search (ILS) is a metaheuristic that explores

the solution space through a local search method and a method

that applies perturbations to each local optimum found. The

perturbation method is capable and responsible for escaping

from local optima and thus of exploring other regions of the

solution space (see [13] for more details on ILS metaheuristic).

Since ILS metaheuristic is widely used in the literature

to solve combinatorial problems [14], we also have been

motivated to propose a method based on it to solve the ThOP.

This method is described in detail in the Algorithm 3, which

starts with an initial solution s that is generated choosing any

random permutation π of all m items. Then, it applies a local

search (Algorithm 2) in s. While the execution time does not

reach the maximum established execution time, the algorithm

performs a perturbation (Algorithm 4) of size k (= 2, initially)

in the current solution s, that produces a new solution s′. Then,

a local search (Algorithm 2) is applied on s′, resulting in s′′.
If the solution s′′ is better than s, s′′ becomes the current

Algorithm 3 Iterated local search

1: procedure ILS ( )

2: s← generate a random solution

3: s← LOCALSEARCH(s)
4: k ← 2

5: repeat
6: s′ ← SHAKE(s, k)
7: s′′ ← LOCALSEARCH(s′)
8: if f(s′′) > f(s) then
9: s← s′′

10: k ← 2

11: else
12: k ← k + 1

13: end if
14: until time limit is reached

15: return s
16: end procedure

Algorithm 4 Shake procedure

1: procedure SHAKE ( s, k )

2: s′ ← s
3: k′ ← 0
4: repeat
5: get a random neighbor solution s′′ ∈ N (s′)
6: s′ ← s′′

7: k′ ← k′ + 1
8: until k′ = k
9: return s′

10: end procedure

solution and the perturbation size is reset to 2; otherwise,

the perturbation size increases by one unit. At the end of the

process, the best solution found is returned.

D. Biased random-key genetic algorithm

Biased Random-Key Genetic Algorithm (BRKGA) [15] has

been proposed based on the Random-Key Genetic Algorithm

(RKGA) [16]. Both are evolutionary metaheuristics that mimic

the processes of Darwinian Evolution [17]. Their mechanisms,

as well as classic Genetic Algorithms (GAs) (see [18] and [19]

for good references), are based on the evolution of a population

of individuals, where each individual encodes a solution to the

problem at hand. Throughout the evolution, characteristics of

individuals with greater fitness tend to survive, thus guiding the

algorithm to explore more promising regions of the solutions

space.

In a RKGA, each individual is represented as a vector of

random-keys, i.e., a vector of real numbers that assume values

in the interval [0, 1]. A deterministic algorithm is responsible

for decoding a feasible solution from a vector of random-keys.

RKGA maintains a population of individuals P of size P, that

is, a population of P vectors of random-keys, throughout the

evolution of the algorithm. The initial population is created

completely randomly, where each random-key of each indi-
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vidual is a random number chosen in the interval [0, 1]. At

each generation of the algorithm, all individuals are decoded

and the population P is divided into two groups: Pe and

Pē. Group Pe is formed by the Pe individuals with greater

fitness, while Pē is formed by the P − Pe others ones, i.e.,

Pē = P \ Pe, where Pe < P/2 . From any generation k of

the RKGA algorithm, a new population P+ is formed based

on the current population P . First, all elite individuals Pe of

generation k are copied to new population P+ (generation

k + 1) without any modification. In order to maintain a high

diversity of the population, Pm mutant individuals are added

into the population P+, which are randomly generated, in

the same way as the individuals of the initial population

are created. To complete the number of individuals P in the

population P+, P−Pe−Pm new individuals are added in P+

from the uniform crossover operator, which combines pairs of

parent individuals from the P population to produce offspring

ones. The uniform crossover operator generates an offspring

individual c from the recombination of the vectors of random-

key of two parent individuals (a and b) randomly selected in

P . For each position i of the vector of random-key, the i-th
random-key of c assumes the value of i-th random-key of a
with probability 0.5 (50%); otherwise it assumes the value of

i-th random-key of b.

BRKGAs differ from RKGAs in the way parent individuals

are selected for mating and also in the way that the mating

is made [15]. In a BRKGA, each offspring individual is

generated combining one individual selected at random from

the elite group Pe and one from the non-elite group Pē. In

addition, BRKGAs use the parameterized uniform crossover,

which generates an offspring with probability ρ > 0.5 of

choosing the random-keys of the elite parent individual. Algo-

rithm 5 demonstrates how this crossover is performed, where

pe is an elite individual and pē is a non-elite one.

Algorithm 5 Crossover procedure

1: procedure CROSSOVER ( pe, pē, ρ )

2: for i← 1 to m do
3: if rand (0, 1) ≤ ρ then
4: pi ← pie
5: else
6: pi ← piē
7: end if
8: end for
9: return p

10: end procedure

These two mentioned differences in respect to the RKGAs

allow the BRKGAs to propagate with greater probability the

characteristics of the best individuals for the next generations,

increasing the chances of finding better solutions.

Motivated by the fact that the BRKGAs have been applied

successfully to solve complex optimization problems [20]–

[23], in the remainder of this section, we describe in detail

a BRKGA to solve the ThOP.

In our BRKGA, each individual has m random-keys, that

is, each individual is represented by a vector of random-

keys of size m (remember that m is the number of items

available in the cities). We use the decoding proposed in [16],

which consists of sorting the vector of random-keys in non-

decreasing order and uses the indices of the sorted keys to

represent a sequence. Fig. 2 shows an example of decoding a

vector of random-keys p of size 6. The random-keys 4, 2, 1, 3,

5 and 6 are sequentially ordered in the p′. Thus the sequence

s = 〈 4, 2, 1, 3, 5, 6 〉 is decoded from p. This sequence can

then be evaluated by the procedure described in the Algorithm

1 to determine the route traveled by the thief and the items

stolen by him. In the course of the paper we will refer to this

decoding procedure by DECODE( p).

p = 〈 0.32
1

, 0.10
2

, 0.62
3

, 0.05
4

, 0.89
5

, 0.93
6
〉

p′ = 〈 0.05
4

, 0.10
2

, 0.32
1

, 0.62
3

, 0.89
5

, 0.93
6
〉

s = 〈 4, 2, 1, 3, 5, 6 〉

Fig. 2: Decoding example.

Algorithm 6 summarizes the previously mentioned steps of

our BRKGA. In addition, in order to find local optimal solu-

tions possibly not found only by the evolution mechanism, at

every L evolutionary cycles we apply a local search procedure

(Algorithm 2) to each individual of the current population.

IV. COMPUTATIONAL EXPERIMENTS

Our two heuristic algorithms (ILS and BRKGA) have

been implemented in C/C++ language and compiled with

GNU version 4.8.2. All experiments have been sequentially

(nonparallel) performed on an Intel(R) Xeon(R) CPU E5-

2660 v2 @ 2.20GHz x 40 computer with 384GB of RAM,

running CentOS Release 6.8 (Final) Kernel Linux 2.6.32-

642.1.1.el6.x86 64.

In order to evaluate the quality of the algorithm ILS and

BRKGA, we have performed tests with different instance

sizes and settings. All instances were created based on the

benchmark of instances for the Traveling Thief Problem (TTP)

[2]. The only additional parameter is the walk time limit T .

In order to have a challenging instance, this parameter should

be set carefully. If it is too high, it would be useless, as the

knapsack capacity W would make the walk time constraint

redundant. On the other hand, if it is too small, it would greatly

limit the number of items, turning the knapsack capacity

constraint useless. A good value would be something less than

(or a fraction of) the route time of the optimal solution for

the corresponding TTP instance. However, optimal solutions

for the TTP are not available. We then derive the parameter

T from the best solution we know for the TTP instances,

which were found by a General Variable Neighborhood Search
(GVNS) we proposed for the TTP competition at the GECCO

2017 conference [9]. As far as we know, the best solutions

received by the organizers were not made available, but our
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Algorithm 6 Biased random-key genetic algorithm

1: procedure BRKGA ( P, Pe, Pm, ρ, L)

2: sbest ← ∅

3: P ← generate P vector of random-keys

4: num ger ← 1
5: repeat
6: for each p ∈ P do
7: s← DECODE(p)
8: if num ger mod L = 0 then
9: s← LOCALSEARCH(s)

10: end if
11: if f(s) > f(sbest) then sbest ← s end if
12: end for
13: Pe ← select the Pe best individuals (elite) from P
14: Pē ← P \ Pe

15: P+ ← Pe

16: Pm ← generate Pm vector of random keys

17: P+ ← P+ ∪ Pm

18: for i← 1 to P − Pe − Pm do
19: pe ← randomly choose an individual from Pe

20: pē ← randomly choose an individual from Pē

21: P+ ← P+ ∪ {CROSSOVER(pe, pē, ρ)}
22: end for
23: P ← P+

24: num ger ← num ger + 1
25: until time limit is reached

26: return sbest

27: end procedure

method was awarded for having improved the solutions of

about 2,500 out of 9,720 instances. We then set different

maximum travel times (T ) as different proportions of the route

time of the best TTP solutions found by our GVNS, in order to

verify the behavior of the resolution methods according to this

characteristic. Therefore, we consider the following features:

• TSP base instance groups: eil51, pr107, a280 and

dsj1000
• number of items per city: 01, 03, 05, and 10
• item relation type: bounded-strongly-correlated (bsc),

uncorrelated (unc), uncorrelated-similar-weights (usw)

• knapsack capacity class: 01, 05, 10
• maximum travel time class: 01, 02, 03

The TSP base groups were arbitrarily chosen from the

groups available from the TTP benchmark, from small to large

sizes. The number of items per city, the item relation type

and the knapsack capacity class are the same defined for the

TTP. The maximum travel time classes 01, 02, 03 use for

parameter T respectively 50%, 75% and 100% of the route

time of our solution for the TTP competition. All instances

are public available at http://www.dpi.ufv.br/~andre/thop/.

Regarding the parameters of the algorithms, we defined as

stopping criteria the execution time equal to �m10� seconds,

which is given in terms of the number of items m of each

instance. The ILS algorithm has no other parameter, whereas

the BRKGA has five other ones: population size P, elite

population size Pe, number of mutant individuals Pm inserted

in each evolutionary cycle, elite inheritance probability ρ, and

the parameter L that indicates how often the local search

procedure is applied. All parameters were empirically tuned

following the parameters value settings recommended in [15].

Our final experiments were performed with P = 100, Pe = 25,

Pm = 30, ρ = 0.6 and L = 50.

Since the ILS algorithm and BRKGA have random com-

ponents, for each instance, we run 10 times each algorithm

with different random seeds and we use the average value of

the objective function and the best one found in these 10 runs

to compare the algorithms. Therefore, we have two results

(average and best) for two algorithms and 432 instances, a

total of 1,728 results. The complete results, including details

of the solutions, can be found in a supplementary material

in Appendix A. In this paper, we present and analyze them

grouped by instances and types, in charts shown in Figure 4

and Tables III, IV, II and I.

Before going into details on the analysis of the results, we

illustrate solutions of a ThOP instance for different maximum

travel times. Figure 3 shows the best result of ILS and

BRKGA for instances eil_01_bsc_01_TT for increasing

travel time limit (from left to right, TT = 01 to 03). The

green triangle is the start point and the red square the end

point. The line represents the route and becomes thicker as

the knapsack becomes heavier. Notice how the route becomes

longer as the thief has more time, and how the profit improves,

sometimes visiting more checkpoints, sometimes changing

the checkpoints visited (in search for more profitable items).

Notice also how BRKGA tends to find routes with less edges

crossing.

We define the metric χ that establishes a measure of the

convergence quality of the algorithms. Equations (10) and

(11) show how the metric χ is calculated for each algorithm,

where ILSavg and BRKGAavg refer to the average value of the

objective function found by the ILS algorithm and BRKGA,

respectively, for the corresponding group, and ILSbest and

BRKGAbest are the best solution found by each algorithm.

Note that the greater the metric χ, the higher the convergence

of the algorithm to the best known solution.

χILS =
ILSavg

max
(

ILSbest,BRKGAbest
) · 100% (10)

χBRKGA =
BRKGAavg

max
(

ILSbest,BRKGAbest
) · 100% (11)

Figure 4 has four charts, which report the results of

each TSP base instance group (eil51, pr107, a280 and

dsj1000). The vertical axis (y-axis) of all charts shows

instance subgroup in the format XXX_YY_ZZZ, where XXX
informs the TSP base instance group, YY the number of

items per city and ZZZ the relation items type. The other

characteristics of the instances (knapsack capacity class and

maximum travel time class) were grouped.
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ILS

T = 163, Profit = 5554 T = 244, Profit = 6152 T = 325, Profit = 6602

BRKGA

T = 163, Profit = 5554 T = 244, Profit = 6276 T = 325, Profit = 6825

Fig. 3: Solutions found by ILS and BRKGA for instances eil_01_bsc_01 for different time limits.

TABLE I: Results grouped by number of items per city.

TSP base
ILS BRKGA

group 01 03 05 10 01 03 05 10

eil51 95.9 92.8 81.8 68.3 97.2 94.5 93.6 92.3
pr107 95.1 84.5 81.6 76.1 95.0 92.4 93.1 94.3
a280 92.4 76.3 70.7 56.0 88.8 90.9 92.1 91.2
dsj1000 79.3 68.3 62.2 59.6 91.3 91.7 91.5 93.2

TABLE II: Results grouped by item relation type.

TSP base
ILS BRKGA

group bsc unc usw bsc unc usw

eil51 86.4 82.7 84.9 95.3 93.4 94.5
pr107 86.1 82.5 84.4 94.8 93.1 93.2
a280 74.5 74.1 72.9 91.8 90.0 90.5
dsj1000 68.9 67.3 65.9 92.2 92.4 91.1

We may see that the performance of BRKGA remains

stable (convergence around 90%) for all groups and all

instances, while the convergence of ILS decreases as the

number of checkpoints increases and as the number of items

increases for the same number of checkpoints, going from

97% to less than 60%. ILS had a better convergence only in

TABLE III: Results grouped by maximum travel time class.

TSP base
ILS BRKGA

group 01 02 03 01 02 03

eil51 86.7 83.7 83.6 93.9 94.6 94.8
pr107 85.2 84.9 82.8 94.1 93.4 93.5
a280 72.1 73.2 76.3 89.7 90.0 92.7
dsj1000 64.8 67.5 69.8 91.3 92.1 92.4

TABLE IV: Results grouped by knapsack capacity class.

TSP base
ILS BRKGA

group 01 05 10 01 05 10

eil51 93.2 82.7 78.2 96.1 93.8 93.3
pr107 90.8 82.3 79.9 96.4 93.0 91.7
a280 78.4 71.8 71.3 92.3 90.3 89.7
dsj1000 69.5 65.6 67.0 93.4 90.8 91.5

the smallest groups of a280 and p107. For a clearer view,

see Table I, that shows the results grouped by number of items

per city. For instance a280, for example, the convergence

of ILS goes from around 92% to 76%, 71% and 56% as

the number of items per city goes from 1 to 3, 5, and 10

respectively.
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(a) eil51 (b) pr107

(c) a280 (d) dsj1000

Fig. 4: Comparative analysis of the convergence of ILS algorithm and BRKGA on the four instance groups.
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The behavior also changes for different item relation type, as

seen on Table II. Both methods perform better for instances

of type bsc. And worst for type unc, except for instances

dsj1000, where usw had the worst convergence.

Regarding the maximum travel time T , the methods tends

to have a better convergence as this parameter increases, as

reported in Table III, except for instances p107, in which

the behavior is the opposite. And finally, convergence of both

methods are better for instances of knapsack capacity class 01
and worst for 10, with only two exceptions: worst for 05 in

the two largest TSP based groups, a280 and dsj1000.

V. CONCLUSIONS AND FURTHER INVESTIGATIONS

In this paper, we introduced a new combinatorial problem

referred to as the Thief Orienteering Problem (ThOP), and

proposed two heuristic algorithms (ILS and BRKGA) to solve

it. We have tested our approaches for the ThOP with 432

instances created based on instances proposed and available

in the literature for the Traveling Thief Problem (TTP).

The results showed a superiority of the BRKGA when

compared to the ILS algorithm, mainly for the large instances.

We think that this superiority is due to the diversification

introduced by the mutant individuals and mainly by the

recombination of the individuals that share good characteristics

of different individuals, generating other ones with greater

fitness and, consequently, better solutions.

As future work, we would like to analyze the performance

of heuristics based on other metaheuristics, and generate upper

bounds on the optimal solution, using an improved version of

the proposed formulation, in order to better attest the quality

of the heuristics.

ACKNOWLEDGMENT

The authors thank Coordenação de Aperfeiçoamento de

Pessoal de Nı́vel Superior (CAPES) and Fundação de Amparo
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APPENDIX

SUPPLEMENTARY MATERIAL

Supplementary material associated with this paper can

be found, in the online version, at the following url:

http://www.dpi.ufv.br/~andre/thop/
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