
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/317246144

PA-Star: A disk-assisted parallel A-Star strategy with locality-sensitive hash

for multiple sequence alignment

Article in Journal of Parallel and Distributed Computing · May 2017

DOI: 10.1016/j.jpdc.2017.04.014

CITATIONS

2
READS

51

5 authors, including:

Some of the authors of this publication are also working on these related projects:

Distributed systems View project

Reinforcement Learning Agents to Tactical Air Traffic Flow Management View project

George Teodoro

Federal University of Minas Gerais

116 PUBLICATIONS 1,042 CITATIONS

SEE PROFILE

Alba Melo

University of Brasília

140 PUBLICATIONS 803 CITATIONS

SEE PROFILE

All content following this page was uploaded by Alba Melo on 20 September 2018.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/317246144_PA-Star_A_disk-assisted_parallel_A-Star_strategy_with_locality-sensitive_hash_for_multiple_sequence_alignment?enrichId=rgreq-82e479b62d241e445a79967ef2ebaf74-XXX&enrichSource=Y292ZXJQYWdlOzMxNzI0NjE0NDtBUzo2NzI5MjUyODM3ODI2NThAMTUzNzQ0OTI5ODkzMQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/317246144_PA-Star_A_disk-assisted_parallel_A-Star_strategy_with_locality-sensitive_hash_for_multiple_sequence_alignment?enrichId=rgreq-82e479b62d241e445a79967ef2ebaf74-XXX&enrichSource=Y292ZXJQYWdlOzMxNzI0NjE0NDtBUzo2NzI5MjUyODM3ODI2NThAMTUzNzQ0OTI5ODkzMQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Distributed-systems?enrichId=rgreq-82e479b62d241e445a79967ef2ebaf74-XXX&enrichSource=Y292ZXJQYWdlOzMxNzI0NjE0NDtBUzo2NzI5MjUyODM3ODI2NThAMTUzNzQ0OTI5ODkzMQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Reinforcement-Learning-Agents-to-Tactical-Air-Traffic-Flow-Management?enrichId=rgreq-82e479b62d241e445a79967ef2ebaf74-XXX&enrichSource=Y292ZXJQYWdlOzMxNzI0NjE0NDtBUzo2NzI5MjUyODM3ODI2NThAMTUzNzQ0OTI5ODkzMQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-82e479b62d241e445a79967ef2ebaf74-XXX&enrichSource=Y292ZXJQYWdlOzMxNzI0NjE0NDtBUzo2NzI5MjUyODM3ODI2NThAMTUzNzQ0OTI5ODkzMQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/George_Teodoro?enrichId=rgreq-82e479b62d241e445a79967ef2ebaf74-XXX&enrichSource=Y292ZXJQYWdlOzMxNzI0NjE0NDtBUzo2NzI5MjUyODM3ODI2NThAMTUzNzQ0OTI5ODkzMQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/George_Teodoro?enrichId=rgreq-82e479b62d241e445a79967ef2ebaf74-XXX&enrichSource=Y292ZXJQYWdlOzMxNzI0NjE0NDtBUzo2NzI5MjUyODM3ODI2NThAMTUzNzQ0OTI5ODkzMQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Federal_University_of_Minas_Gerais?enrichId=rgreq-82e479b62d241e445a79967ef2ebaf74-XXX&enrichSource=Y292ZXJQYWdlOzMxNzI0NjE0NDtBUzo2NzI5MjUyODM3ODI2NThAMTUzNzQ0OTI5ODkzMQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/George_Teodoro?enrichId=rgreq-82e479b62d241e445a79967ef2ebaf74-XXX&enrichSource=Y292ZXJQYWdlOzMxNzI0NjE0NDtBUzo2NzI5MjUyODM3ODI2NThAMTUzNzQ0OTI5ODkzMQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alba_Melo?enrichId=rgreq-82e479b62d241e445a79967ef2ebaf74-XXX&enrichSource=Y292ZXJQYWdlOzMxNzI0NjE0NDtBUzo2NzI5MjUyODM3ODI2NThAMTUzNzQ0OTI5ODkzMQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alba_Melo?enrichId=rgreq-82e479b62d241e445a79967ef2ebaf74-XXX&enrichSource=Y292ZXJQYWdlOzMxNzI0NjE0NDtBUzo2NzI5MjUyODM3ODI2NThAMTUzNzQ0OTI5ODkzMQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Brasilia?enrichId=rgreq-82e479b62d241e445a79967ef2ebaf74-XXX&enrichSource=Y292ZXJQYWdlOzMxNzI0NjE0NDtBUzo2NzI5MjUyODM3ODI2NThAMTUzNzQ0OTI5ODkzMQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alba_Melo?enrichId=rgreq-82e479b62d241e445a79967ef2ebaf74-XXX&enrichSource=Y292ZXJQYWdlOzMxNzI0NjE0NDtBUzo2NzI5MjUyODM3ODI2NThAMTUzNzQ0OTI5ODkzMQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alba_Melo?enrichId=rgreq-82e479b62d241e445a79967ef2ebaf74-XXX&enrichSource=Y292ZXJQYWdlOzMxNzI0NjE0NDtBUzo2NzI5MjUyODM3ODI2NThAMTUzNzQ0OTI5ODkzMQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf

PA-Star: a Disk-Assisted Parallel A-Star Strategy with

Locality-Sensitive Hash for Multiple Sequence

Alignment

Daniel Sundfelda, Caina Razzolinia, George Teodoroa, Azzedine
Boukercheb, Alba Cristina Magalhaes Alves de Meloa

aDepartment of Computer Science, University of Brasilia (UnB), Brazil
bSchool of Information Technology and Engineering (SITE), University of Ottawa,

Canada

Abstract

Multiple Sequence Alignment (MSA) is a basic operation in Bioinformat-
ics, used to highlight the similarities among a set of sequences. The MSA
problem was proven NP-Hard and it requires a high amount of memory and
computing power. This problem can be modeled as a search for the path
with minimum cost in a graph and the A-Star algorithm has been adapted
to solve it sequentially and in parallel. The main challenges of designing
a parallel version for MSA with A-Star are the irregular data dependency
pattern and huge memory requirements. In this paper, we propose PA-Star,
a locality-sensitive multithreaded strategy based on A-Star which computes
optimal MSAs using both RAM memory and disk to store A-Star nodes. The
experimental results obtained in 3 di↵erent machines show that the optimiza-
tions used in PA-Star can achieve a speedup of 1.88⇥ in the serial execution
and that the parallel execution can attain a speedup of 5.52⇥ in 8 cores. We
also show that PA-Star outperforms a state-of-the-art MSA A-Star based
tool, executing up to 4.77⇥ faster. Finally, we show that our disk assisted
strategy is able to retrieve the optimal alignment when other tools fail.

Keywords: multiple sequence alignment, locality-sensitive hash, A-Star,
parallel algorithms

Email addresses: sund@unb.br (Daniel Sundfeld), cfbrazzolini@gmail.com (Caina
Razzolini), teodoro@cic.unb.br (George Teodoro), boukerch@site.uottawa.ca
(Azzedine Boukerche), alves@unb.br (Alba Cristina Magalhaes Alves de Melo)

Preprint submitted to Journal of Parallel and Distributed Computing August 21, 2016

1. Introduction

Bioinformatics is an interdisciplinary field that involves computer science,
biology, mathematics and statistics [1]. One of its main goals is to analyze
biological sequence and genome data in order to obtain the function/structure
of the sequences as well as evolutionary information.

Multiple Sequence Alignment (MSA) is a basic operation in Bioinformat-
ics in which similar characters among a set of n biological sequences (n � 3)
are aligned together to highlight the similarity among the sequences. MSAs
are often used as a building block to solve important and complex problems,
such as the definition of phylogenetic relationships and 2D structure pre-
diction, among others. In all these cases, the quality of the solutions relies
heavily on the quality of the underlying MSAs.

The MSA problem has been proven NP-Hard [2] and, for this reason, ob-
taining the optimal solution requires high computing power and huge amount
of memory space. There are two main strategies to reduce the search space
of the optimal MSA problem. The first one was proposed by Carrillo-Lipman
[3] and it defines lower and upper bounds in the search space composed of
an n-dimensional dynamic programming matrix, in which n is the number of
sequences. The second strategy transforms the MSA problem in the problem
of searching the path with minimum cost in a graph and applying the A-Star
(A*) algorithm [4] to solve it. In this paper, we employ the A-Star based
strategies.

A-Star is a best-first search algorithm that works mainly with two lists
(OpenList and ClosedList) in which the OpenList contains the nodes yet to
be analyzed and the ClosedList contains the nodes which have already been
analyzed. A-Star has been used to solve the MSA problem in [5, 6, 7] and,
more recently, parallel variants of these solutions have been proposed [8, 9].

Parallelizing A-Star involves two main challenges. Firstly, it presents an
irregular data access pattern that requires sophisticated strategies to assign
the computation of A-Star nodes to threads. Secondly, it requires a huge
amount of memory, which often limits the lengths and number of sequences
compared.

The solution proposed in [8] is an MPI based implementation that reduces
the use of RAM memory by eliminating the ClosedList at the expense of
increasing computing time by reprocessing parts of the graph. In [9], a

2

multithreaded solution is proposed where disk and RAM memory are used in
order to increase the memory space also at the expense of increased execution
time. So far, designing an A-Star based MSA strategy with good performance
and reasonable use of memory is still an open problem.

In this paper, we propose and evaluate PA-Star, a parallel solution for the
MSA problem based on A-Star. In our solution, we divide the A-Star search
space using a hash function with locality preserving characteristic, aiming
to reduce the overhead of threads communication and, as a consequence,
improve the scalability of the parallelization. In order to deal with the high
memory demands of the algorithm, PA-Star saves nodes of the ClosedList to
disk when the usage of RAM memory is close to the maximum.

The results obtained in three di↵erent machines with up to 32 cores and
1TB of RAM memory by comparing real and synthetic sets of sequences
show that PA-Star is able to drastically reduce the execution time. We show
that our parallel approach is able to outperform one of the state-of-the art
solutions [8], with a speedup of 2.89⇥ and 4.77⇥ for the BAliBASE glg and
2ack sets of sequences.

The rest of this paper is organized as follows. We present an overview of
the MSA problem in Section 2. Section 3 discusses related work in the area
of exact MSA with A-Star. In Section 4, we present the design of PA-Star
and the experimental results are shown in Section 5. Finally, we conclude
the paper in Section 6.

2. Multiple Sequence Alignment (MSA)

2.1. Overview

Biological sequences are an ordered set of characters, correspond-
ing to DNA, RNA or protein sequences. DNA and RNA sequences
are composed of four nucleotides which are, respectively, {A, T, C,G}
and {A,U,G,C}. There are 20 amino acids in nature, represented by
{A,C,D,E, F,G,H, I,K, L,M,N, P,Q,R, S, T, V,W, Y }. The protein se-
quences are composed of these amino acids.

A global Multiple Sequence Alignment (MSA) of n � 3 sequences S =
S
1

, S
2

, ..., Sn is obtained in such a way that spaces (gaps) are inserted into
each of the n sequences so that the resulting sequences have the same length
l. Then, the sequences are placed one above the other, arranged in n rows
of l columns each [10]. Figure 1 shows an example of an MSA of protein
sequences S

1

=NLFVALYD, S
2

=KVIYALWD and S
3

=GYALWDQY. In

3

this figure, we show that the search space for the alignment of 3 sequences is
a cube where the sequences are placed at the x, y and z axes. The alignment
can be represented as a path in the graph which connects the upper left
corner of the cube (beginning of the sequences) to its bottom right corner
(end of the sequences).

S1: N L F V A L Y D - -

S2: K V I Y A L W D - -

S3: - - G Y A L W D Q Y

S2
#

pruned'area'

Figure 1: MSA with 3 sequences. The textual alignment is represented at
the upper left side and the gray line inside the cube illustrates the alignment.

The goal of an MSA algorithm is to minimize a cost function, generating
the alignment with the lowest score. If n > 2 sequences are compared, an
n-dimensional cube is used. Usually, MSAs are scored with the Sum-of-Pairs
(SP) function and the exact SP MSA problem is known to be NP-hard [2].
The SP score indicates the alignment distance (minimum number of inser-
tions, deletions and substitutions) among the sequences. Every pair of bases
is scored with the pairwise scoring function and the final score is the addi-

4

tion of the pairwise scores. For instance, consider the protein sequences in
Figure 1 and assume that the punctuation for characters in the same column
are given by the substitution matrix PAM250 [11] adjusted to calculate the
minimum cost 1 and that the penalty for gaps is 24. In this case, the SP
score for the alignments would be 122 + 145 + 114 = 381.

The optimal MSA among n sequences can be calculated by extending the
exact dynamic programming (DP) algorithm for pairwise comparison [12].
Without loss of generality, assume that there are 3 sequences S

1

, S
2

and
S
3

, of lengths l
1

, l
2

and l
3

, respectively. A 3-dimensional DP matrix D is
calculated, in which Di,j,k is the optimal alignment of prefixes S

1

[1..i], S
2

[1..j]
and S

3

[1..k].

Algorithm 1 Näıve MSA 3seq (S
1

, S
2

, S
3

)
1: for i = 1! l1 do

2: for j = 1! l2 do

3: for k = 1! l3 do

4: cij = score(S1(i), S2(j));
5: cik = score(S1(i), S3(k));
6: cjk = score(S2(k), S3(j));
7: d1 = D(i� 1, j � 1, k � 1) + cij + cik + cjk
8: d2 = D(i� 1, j � 1, k) + cij + gap
9: d3 = D(i� 1, j, k � 1) + cik + gap
10: d4 = D(i, j � 1, k � 1) + cjk + gap
11: d5 = D(i� 1, j, k) + 2 ⇤ gap
12: d6 = D(i, j � 1, k) + 2 ⇤ gap
13: d7 = D(i, j, k � 1) + 2 ⇤ gap
14: D(i, j, k) = Min[d1, d2, d3, d4, d5, d6, d7]
15: end for

16: end for

17: end for

18: return D(l1, l2, l3)

The näıve algorithm that computes the optimal MSA score is depicted
in Algorithm 1. There are three for loops (lines 1 to 3), one loop for each
sequence. The scores for matches/mismatches are calculated in lines 4 to 6.
After that (lines 7 to 13), 7 values are calculated which correspond to the 7
neighbor cells of Di,j,k. In line 14, Di,j,k receives the minimum value of those
calculated in lines 7 to 13. If there are n sequences to be compared, there
will be n loops in this algorithm and 2n � 1 cells will be used to calculate
each cell of matrix D. At the end of the computation, the optimal MSA
score is the value of cell D(l

1

, l
2

, l
3

). In the näıve algorithm, all cells of D are

1Value 17 is added to each cell as in the MSA 2.1 tool (xylian.igh.cnrs.fr/msa/msa.html)

5

computed.
In the literature, that are some proposals which reduce the number of cells

calculated to obtain the optimal MSA. The most popular ones are Carrillo-
Lipman and A-Star.

2.2. Carrillo-Lipman (CL)

Carrillo-Lipman (CL) [3] defined a lower and an upper bound to confine
the region which contains the optimal alignment and, thus, to restrict the
area of the n-dimensional matrix to be calculated.

The lower and upper bounds have a value that is based on the projection
of a heuristic alignment subtracted from the scores of the pairwise alignments.
It is guaranteed that cells outside those bounds do not contribute to the
calculation of the optimal MSA. Carrillo-Lipman [3] have proven that the
sum of all pairwise optimal alignments is a lower bound and that an heuristic
alignment can be used as an upper bound to the optimal MSA. Since the
optimal alignment is confined in the region defined by the upper and lower
bounds, the number of cells computed can be reduced. In figure 1, the pruned
area would be defined by the upper and lower CL bounds.

2.3. A-Star (A*)

In the A-Star (A*) [4] approach, the MSA problem is modeled as a graph
and the problem of finding the optimal MSA is equivalent to the problem of
finding the shortest path in this graph between the initial Node with coordi-
nate Ni = (0, 0, ..., 0) and the final Node with coordinate Nf = (l

1

, l
2

, ..., ln),
where li is the length of the sequence i, and n is the number of sequences.

To reduce the search space, an admissible heuristic function is used. In
the A-Star algorithm, the cost function f (Equation 1) describes the order
in which the nodes should be visited, while searching for the optimal result.

f(N) = g(N) + h(N) (1)

In Equation 1, g(N) is the cost from the origin to node N , h(N) is an
estimated cost from node N to the final node, and f(N) is the estimated
optimal cost through N .

The A-Star algorithm is shown in Algorithm 2. The OpenList contains
the nodes to be expanded, and the ClosedList contains the nodes that have
been expanded. Initially, the OpenList contains only the initial node Ni (line
1), and the ClosedList is empty. In the find step, the node with the best f
value is selected (line 2). Next, in the stop step, if the selected node is in

6

Algorithm 2 A-Star(Ni, Nf)
1: OpenList Ni

2: while OpenList.lowest f() /2 Nf and OpenList 6= ; do

3: current OpenList.get lowest f()
4: if current.g ClosedList.find g(current) then

5: ClosedList ClosedList [current
6: for neighbor in neigh(current) do

7: if neighbor.g < OpenList.find g(neighbor) and neighbor.g <
ClosedList.find g(neighbor) then

8: OpenList OpenList [neighbor
9: end if

10: end for

11: end if

12: end while

13: if OpenList = ; then
14: ne NULL
15: else

16: ne OpenList.get lowest f()
17: end if

18: return ne

the Nf set, or if this node does not exist because the OpenList is empty, the
algorithm stops (line 2). Otherwise, the node with best f value is removed
from the OpenList (line 3). If a better node has been previously found (line
4), the current node cannot be part of the optimal path and it is discarded.
Otherwise this node is moved to the ClosedList (line 5). In expand and

reconciliation step (lines 6-10), all neighbors from the node are added to
the OpenList if another node with better f was not found yet. Further, the
algorithm continues the search process until the stop condition is true.

When the algorithm stops, if the OpenList is empty, it does not exist
a path from Ni to Nf (line 14). Otherwise, the node with the best f(Nf),
has a g value that is the optimal cost from Ni to Nf , and it is possible to
find the best path using a backtrace function in the ClosedList. In Figure
1, the pruned area would be defined by the way the nodes are expanded in
the A-Star algorithm.

Spouge [5] showed that the Carrillo-Lipman bound and the A-Star algo-
rithm are closely related by demonstrating that the Carrillo-Lipman lower
bound is an admissible heuristic for the h(n) cost of the A-Star algorithm.
This heuristic is often called h

2,all heuristic.
In order to apply the A-Star algorithm to the MSA problem, we assume

that the h
2,all heuristic will be used. In order to do that, the reverse of the

n sequences are first pairwise aligned with the Needleman-Wunsh algorithm
[12]. For instance, if three sequences S

1

, S
2

and S
3

are compared, 3 opti-

7

mal pairwise alignments are generated for the following pairs of sequences:
(S

1

, S
2

), (S
1

, S
3

) and (S
2

, S
3

) and the entire dynamic programming matrix
is kept in memory for each pairwise alignment. To calculate h(n) for node
with coordinates x, y, z, we add the matrix cells (x, y), (x, z) and (y, z) from
the (S

1

, S
2

), (S
1

, S
3

) and (S
2

, S
3

) matrices. Then, function g(N) is calcu-
lated with the SP function, representing the cost from the origin node to the
node N being evaluated and function f(N) is the addition of both functions
(Equation 1).

3. Related Work

There are many works in the literature that treat the MSA problem with
a graph formulation and solve it using the A-Star algorithm [5] [6] [7] [13]
[14]. However, few works aim to solve MSA using A-Star with a parallel
strategy.

PE2A* was proposed by [9]. It is a multithreaded strategy that uses
external memory (disk) to augment the memory space that can be used by
the algorithm. PE2A* combines two previously proposed techniques: Partial
Expansion A* (PEA*) [15] and Hash Based Delayed Duplicate Detection
(HBDDD)[16]. PEA* does not place all successor nodes in the OpenList.
Instead, it prunes successor nodes which do not appear to be promising thus
potentially accelerating the computation. In this case, however, additional
runtime may be necessary due to node re-expansion. HBDDD places newly
expanded nodes of the OpenList into several disk files and processes them
later, using a hash function to allocate the files to the processing nodes. In
a machine with 12 cores, PE2A* was capable of solving one of the hardest
sets of sequences in BAliBASE [17] reference set (arp) 3.27⇥ faster than the
multithreaded strategy that uses only DDD [18].

Niewiadomski et. al. [8] proposed PFA*-DDD, a parallel strategy using
Delayed Duplicate Detection (DDD) and Frontier-Search [19], which is a
workload distribution strategy based on intervals. Since Frontier-Search does
not use a ClosedList, the authors proposed a divide-and-conquer strategy to
retrieve the alignment. This strategy creates 3n processes, each one executing
a di↵erent step in A-Star. In the experimental results, a cluster of 32 dual-
core machines was used, each one with 3 processes. PFA*-DDD was able to
solve one of the hardest sets of instances in BAliBASE reference set 1 (gal4)
21.0⇥ faster than the single node strategy, taking 1 hour and 10 minutes (64
cores). Since this is one of the most e�cient and scalable solutions to the

8

problem and its code has been made available to us by the authors, we have
compared A-Star to PFA*-DDD in Section 5.

4. Design of Parallel A-Star

4.1. Overview

PA-Star is a multithreaded A-Star tool which retrieves optimal MSAs
using augmented memory space. The goals of PA-Star are twofold. First, it
aims to reduce the execution time by using a locality-sensitive hash function
to assign A-Star nodes to threads. Second, it aims to solve di�cult sets
of sequences which require a huge amount of memory by combining RAM
memory and disk. These two goals are in conflict with each other since the
use of disk will clearly reduce the performance of the solution. Therefore, if
there is enough RAM memory, PA-Star does not use disk. Nevertheless, if

Figure 2: PA-Star Design with 2 threads. Each thread i has an OpenList
(Oi), a ClosedList (Ci) and a queue (Qi). The threads expand the nodes
in parallel (n

1

and n
2

), removing nodes from its OpenList and adding them
in its ClosedList. During the expansion, the locality sensitive hash function
(H) (Equation 2) is used to determine in which OpenList the neighbor node
should be inserted. Nodes that belong to the same thread, are directly in-
serted in the thread’s OpenList whereas nodes that belong to thread j are
written in queue Qj.

9

PA-Star notices that it will run out of RAM memory, it starts to use both
RAM memory and disk.

In PA-Star, the nodes contained in the OpenList are expanded in parallel
and the A-Star lists are managed locally by t threads. Therefore, each thread
ti has its own OpenListi, ClosedListi and a queue qi (Figure 2). The nodes
that compose the search space are distributed among the threads using a
locality-sensitive hash function.

Every node in the lists has a coordinate that uniquely identifies it. The
initial node is Ni = (0, 0, ..., 0) and the final node is Nf = (l

1

, l
2

, ..., ln). The
mapping between the lists of thread ti (OpenListi and ClosedListi) and the
nodes is computed by Equation 2. In this equation, H is a hash function,
(N

1

, N
2

, ..., Nn) are the node coordinates, S is a constant shift-right factor,
t is the total number of threads and ti is the thread id. The mod operation
is used to map the hash result to 0 ti < t. Final nodes are an exception
for this rule and are written in all OpenLists, as explained at the end of this
section.

(H(N1, N2, ..., Nk) � S) mod t = ti (2)

If thread ti expands node k, it is desirable that node k is added to
OpenListi, reducing the overhead of communication and providing a better
use of the caches. To achieve this, we propose the use of (a) hash func-
tions with locality preserving characteristic, in order to map to the same
thread the neighbors of the expanded node, and (b) shift-right operations,
where the least significant bits of the hash are discarded. In this work, we
used two H functions: the SUM function, that simply adds all numbers
in the coordinate; and the ZORDER function, which is based on Z-Order
curves [20]. The ZORDER function was selected because it preserves local-
ity and is inexpensive, since it consists of shift operations to interleave the
bits of numbers in the coordinate values.

4.2. PA-Star Algorithm

As shown in Algorithm 3, PA-Star is divided in two alternate steps, exe-
cuted in parallel: search step and verify end condition (lines 6, 7). Search step
implements Algorithm 2 lines 3 to 11 and verify end condition implements
line 2 in the same algorithm.

PA-Star executes as follows. First, thread t
0

executes lines 1 to 4 (Al-
gorithm 3). The hash function H is applied to the initial node Ni and the

10

thread id h is obtained (Line 1). The initial node Ni is placed in the Open-
List of thread h (Line 2). Then, the end condition and the value of the cost
function f for the final node (n) are initialized as false and 1 (lines 3 and 4).
Further, t threads execute in parallel the two steps of the algorithm (lines 5
to 8).

Algorithm 3 PA-Star(Ni, Nf)
1: h hash(Ni)

2: OpenListh Ni

3: end condition false
4: n 1
5: parallel do

6: n search step(ti, Nf)

7: end condition verify end condition(ti)
8: while end condition == false
9: return n

Algorithm 4 search step(i, Nf)
1: ct 0

2: final node 1
3: while ct < threads num do

4: /* beginning of the search step */

5: consume queue(qi)
6: current OpenListi.get lowest f()
7: if current.g ClosedListi.find g(current) then

8: ClosedListi ClosedListi [current
9: if current 2 Nf then

10: ct ++

11: final node current
12: process final node(current, ct)
13: else

14: for neighbor in neigh(current) do

15: h hash(current)
16: qh qh [current
17: end for

18: end if

19: end if

20: /*end of the search step */

21: end while

22: return final node

In the search step (Algorithm 4), all threads execute a modified version
of the A-Star algorithm. While the threads counter, ct, is smaller than the
total number of threads (line 3), thread ti consumes queue qi, removing all
nodes in qi and adding them in OpenListi (line 5). After this, the node with
lowest f is removed from OpenListi (line 6).

11

If the node removed from the list is not final, it is added to the ClosedListi
(line 8) and expanded (lines 14 to 17). During the expand phase, the locality-
aware hash function is used to determine in which list the neighbor node
should be inserted (line 15). Nodes that belong to thread th are inserted in
queue qh.

When the expanded node is a final node Nf (line 9), this node is the
optimal result only if it has the lowest f among all the nodes in the Open Lists
of all threads. We optimized this verification by dividing this end condition
test in two phases (asynchronous and synchronous) aiming to reduce the
synchronization overhead. In the asynchronous phase, the threads counter,
ct, is increased and the function process final node (line 12) is called. In
this function, if the value of f for the final node is lower than the current
lowest value, node Nf and the value of f are inserted in all the other queues.

All threads keep executing the search step and when thread ti expands
node Nf again, this means that Nf has the lowest f value among all nodes in
OpenListi, and ct is incremented (line 10). When ct is equal to threads num,
all threads have expanded Nf , so this node is returned as a possible result
(line 22). But some other nodes with lower f may exist in other queues qi,
or may have been inserted in some Open List after the thread has expanded
Nf . To guarantee that Nf is the optimal result, all threads move to the next
step.

In verify end condition (Algorithm 3, line 7), the threads do not expand
nodes anymore, a shared memory boolean variable bs is set to true and all
threads are synchronized. All threads consume their queues and every thread
ti verifies if f(Nf) < OpenListi.lowest f() is true. If not, bs is set to false.
All threads are synchronized again. After this, if bs is true, node Nf is
the optimal result, the verify end condition returns true and the algorithm
returns Nf (Algorithm 3, line 9). Otherwise, some nodes with lower f do
exist in some OpenList and they must be expanded before it is possible
to guarantee that Nf is the optimal result. To restart the search process,
node Nf is inserted in the OpenList of the thread that first expanded it, the
verify step function returns false and all threads go back to the search step.

In addition, few special conditions must be checked. First, when thread
ti calls consume queue but OpenListi is empty, it must wait for new nodes
in qi. Another special condition is in the process final node function. If one
thread reaches the final node Nf and f(Nf) is lower that the current lowest
f value, it means that a better result was found while other threads were
still consuming their OpenLists. The verification of Nf as a possible result

12

must be canceled and newest f value must be verified as the optimal result.
Thus, ct is reset to 1, and the newest f value is written in all other queues.

With this two step verification phase, we reduce the overhead by synchro-
nizing threads only in the second phase, i.e., if a possible optimal result is
found.

4.3. Design of the OpenList data structure

One of the challenges of the A-Star approach is the design of the OpenList
data structure. The nodes in the OpenList have two di↵erent fields that must
be used as a key: the f value, represented by one integer, and the coordinates,
represented by n integers, where n is the number of sequences. The A-Star
algorithm must verify and possibly remove the node with lowest f (Algorithm
2, line 3). This operation is usually implemented with priority queues. It
must also find a node using its coordinates (Algorithm 4, line 6), which is
commonly done with the aid of hash functions or tables.

Niewiadomski et. al. [8] implemented the OpenList as a dictionary, using
two data structures: one priority queue and one hash table. The obvious
problem of this operation is that the memory used to represent the nodes is
duplicated.

In PA-Star, we propose a new solution to the implementation of the Open-
List : the use of a Multi-Index. The Boost C++ Library (www.boost.org)
provides a multi-index class template which enables the construction of data
structures having more than one index with di↵erent sorting and access se-
mantics. Our Boost C++ based Multi-Index OpenList has two indexes: (a)
the value of function f and (b) coordinates. We also designed an OpenList
with the dictionary approach using the STL library [21]. For comparison rea-
sons, we use an STL priority queue to operate in the f field, and an STL map
to operate in the coordinate field. In both implementations, the ClosedList
data structure is implemented as an STL map, since it does not requires
operations in the f field.

4.4. Use of Templates

Every node in the search space has a unique coordinate, which is rep-
resented by n integers, where n is the number of sequences. Changing the
number of sequences has a great impact on the performance and, for this
reason, some solutions in the literature are optimized for a specific number
of sequences. One common technique is to create di↵erent codes and data

13

Figure 3: Dynamic Memory (Left) and Template Design (Right)

structures, each one for a given number of sequences, commonly between 4
and 8 sequences [8].

Clearly, it is inappropriate to create and maintain distinct sets of func-
tions and data structures for every desired number of sequences. A possible
solution for this issue is to use dynamic memory, where the node allocates
memory according to the number of sequences. Figure 3 shows a node repre-
sentation for four sequences with dynamic memory (left) and with templates
(right).

The main disadvantage of using dynamic memory is the increase on mem-
ory usage. As an example, using 64-bit pointers and 16 bits integer coordi-
nates, the node representation with dynamic memory requires about 2⇥more
space than its templates counterpart.

Therefore, we opted to use templates. Templates allow for the compiler
to create variants of data structures, classes and functions, using the same
specification. In order to use templates, we created a macro to specify to
the compiler which numbers of sequences will be used and the compiler uses
this macro to create a code specialized for each variant. For the sake of
performance comparison, we have also developed an implementation using
dynamic memory allocation.

4.5. Disk-Assisted PA-Star Module (DAPA)

As stated in Section 2, one of the challenges of the A-Star algorithm is
that it often requires a huge memory space. Our Disk-Assisted Module aims
to overcome the limitation in size of the RAM memory by using disk space
as soon as the RAM memory usage is higher than a user-defined threshold.
Since empirical tests showed that the ClosedList is much bigger than the
OpenList in most executions, we opted to place part of the ClosedList in
disk, whenever the threshold is attained.

14

In order to define which areas of the ClosedList should be transferred to
disk, we propose the concept of region. An active region is a subset of nodes
which is being processed by thread ti in a given iteration of the PA-Star
algorithm. The active region of thread ti contains the nodes with highest
priority amongst the regions of thread ti. The other regions of this thread
are called inactive regions. Therefore, nodes placed in inactive regions may
be placed into disk. In the next iteration, the inactive regions in disk may
become active. In this case, the region is read from disk to RAM memory.

In the basic design of PA-Star (Section 4.2), each thread ti processes
exactly one region and has an OpenListi and a ClosedListi. In DAPA, if
thread ti processes r regions, OpenListi and ClosedListi are partitioned into
r OpenListij and r ClosedListij, in which j = 1..r. Thus, one thread may
process more than one region. For this reason, the hash function shown in
Equation 2 was modified as shown in Equation 3.

(H(Nf1, Nf2, ..., Nfk) � S) mod (t ⇤ r) = ti (3)

Since DAPA will run only when the RAM memory occupation is high,
we can assume the sizes of the OpenLists and ClosedLists are considerable.
For this reason, we included a new type of list, called HoldingList. The
HoldingList contains nodes which are generated in the current iteration and
would be otherwise placed into the OpenList.

Figure 4: Design of DAPA

Figure 4 illustrates the design of DAPA. At the beginning of one iteration
of Algorithm 3, each node which is in thread’s ti queue and belongs to region

15

j is either added to the OpenListij, if it belongs to the active region, or to
the HoldingListij, otherwise. It is worth noticing that a node is only added
to the OpenListij if it is not already in the ClosedListij. If there are du-
plicates, the node with highest priority is kept. Then, the threads check all
their regions and the region that contains the node with highest priority is
set as active region. If the ClosedListij of the active region for this iteration
is in disk, it is transferred back to RAM memory. After, the HoldingListij
of the newly active region is moved to the OpenListij. If the RAM memory
occupation is above the threshold, the region in which the node with high-
est priority has the lowest priority among all regions is transferred to disk
iteratively until the memory occupation is below the threshold. Next, the
search step and verify end condition of the PA-Star are executed (Algorithm
3).

Data movement to/from disk is illustrated in Figure 5. In this case, the
threshold is above the user-defined memory limit. So, the inactive region r

1

is moved to disk (1). If the inactive region ri becomes active, it is moved
back to memory (2).

Figure 5: Data movement to/from disk in DAPA

During the implementation of DAPA, we were not able to limit the

16

amount of RAM memory allocated to the PA-Star process due to the Linux
OS restrictions. Therefore, we opted to limit the size of the ClosedList, which
is the data structure that has the greatest impact on the amount of memory
allocated to PA-Star.

5. Experimental Results

5.1. Experimental Setup

PA-Star was written in C++ with Boost C++ libraries, compiled with
g++ -O3. In our tests, three di↵erent machines were used, as shown in Table
1. All machines run the operating system Linux CentOS. The first two ma-
chines (Machine1 and Machine2) are desktops available at our laboratories.
Machine3 is a server machine located at Texas Advanced Computing Center
(TACC) accessed through XSEDE (www.xsede.org).

Name Processor Cores RAM Disk
(GB)

Machine1 1 Intel i7-37700 3.5GHz 4 8 1 TB
Machine2 1 Intel i7-4790 3.6GHz 4 32 200 GB
Machine3 4 Intel Xeon E5-2680 2.7GHz 32 1024 250 GB - local

14 PB - Lustre

Table 1: Machines used in the tests.

The following PA-Star parameters were used in our tests. The substitu-
tion matrix PAM250 was used to score the matches/mismatches, adjusted
for the minimization problem (i.e. the values were added to 17), and the
penalty for gaps was set to 30. Otherwise stated, the number of regions per
thread was set to 1 and DAPA (Section 4.5) was disabled.

The experiments were executed using sets of se-
quences retrieved from the BAliBASE [17] benchmark from
http://labs.bio.unc.edu/Vision/private/Documentation/VisionLab/doc/BAli
BASE/align index.html. BAliBASE is a widely used database composed
of sets of sequences with their corresponding MSAs, which were manually
defined by biologists in order to evaluate and compare MSA tools. In its
current version, there are 9 reference sets. In our tests, we used all the 82 sets
of sequences that belong to reference set 1, which contains sets of less than
7 sequences of similar length. We also used one sequence retrieved from the

17

PFAM database available at http://pfam.xfam.org and synthetic sequences.
Synthetic sequences 1 to 3 were generated empirically by moving blocks of
characters in a way that favors the addition of gaps in the optimal alignment
as in [22]. Sequence synth4 used the BAliBASE sequence set 2ack as a basis
and was generated by moving blocks of characters among the sequences in
this set, generating a hard alignment pattern. The characteristics of the
sequences mentioned in this section are shown in Table 2.

Base Reference # Seq Shortest Longest
PFAM PF07708 22 17 17

BAliBASE 1gdoA 4 235 265
BAliBASE 1dlc 4 568 590
BAliBASE 3pmg 4 540 567
BAliBASE 1wit 5 90 106
BAliBASE 1hva 5 137 199
BAliBASE arp 5 380 418
BAliBASE 1sesA 5 417 442
BAliBASE glg 5 438 486
BAliBASE 2ack 5 452 482
BAliBASE 1gpb 5 796 828
BAliBASE 1pamA 5 435 572
BAliBASE 1taq 5 806 928
BAliBASE 1lcf 6 662 691
Synthetic synth1 3 231 416
Synthetic synth2 5 80 98
Synthetic synth3 5 619 619
Synthetic synth4 5 600 600

Table 2: Sequences used in the tests

5.2. Multi-index vs Dictionary

The goal of this experiment is to evaluate the gains obtained with the
multi-index data structure. Machine2 (Table 1) was used in this test. Two
di↵erent approaches for the implementation of the OpenList in PA-Star were
considered: multi-index and Dictionary.

Table 3 presents the results obtained with four sets of sequences: PF07708,
3pmg, synth1 and synth2 (Table 2). The execution times and the RAMmem-
ory were obtained with the command time. In this table, we can notice that,
for the sequences compared, the multi-index approach consumes less memory
and has better execution times than its dictionary counterpart.

18

In this test, the best result was obtained for the sequence set PF07708,
in which the execution time was reduced in 28.5% and the RAM memory
in 57.7%. For this sequence, RAM memory usage was decreased from 28.8
GB to 11.97 GB. The execution of the synth2 set with multi-index achieved
0.5% reduction in the execution time and 21.4% in memory usage whereas
the synth1 execution had a 23.2% reduction in execution time and 2.09% in
memory usage. These two sequences were manually produced with complex
character configurations. Even in this cases, multi-index showed that it is a
better choice than dictionary.

Sequences (k) Data Structure Time (s) RAM (GB)

PF07708 (22)

Dictionary 452.91 28.28

Multi-Index 324.05 11.97

3pmg (4)

Dictionary 75.20 0.73

Multi-Index 66.35 0.59

synth1 (3)

Dictionary 41.14 0.48

Multi-Index 31.58 0.47

synth2 (5)

Dictionary 585.21 3.17

Multi-Index 582.72 2.49

Table 3: Execution times and memory usage for multi-index vs dictionary

5.3. Templates vs Dynamic Memory
In this experiment, we used Machine2 to compare the PA-Star imple-

mentation using dynamic memory allocation with its implementation with
templates. In this case, the multi-index OpenList was used. We executed
PA-Star with the same sets of sequences shown in Section 5.2.

Table 4 presents the execution time and memory usage obtained in this
experiment. It can be seen that the execution time and memory usage are
greatly reduced when templates are used. We observed a reduction in the
execution time from 18.7% (PF07708) to 43.42% (synth1) and a reduction
from 30.58% (PF07708) to 53.20% (synth2) in memory usage when using
templates. This great reduction can be explained by the usage of more
compiler optimizations, which can be applied when using templates. In this
case, the compiler knows exactly how many sequences are used in all functions
and data structures, allowing it to make optimized memory allocations.

Figure 6 presents the output of PA-Star for the PF07780 sequence set.
Even though there are 22 sequences in this set, PA-Star is able to retrieve
the optimal alignment in less than five minutes since the sequences are very
similar.

19

Sequences (k) Technique Time (s) RAM (GB)

PF07708 (22)

Dynamic Memory 324.05 11.97

Templates 263.49 8.31

3pmg (4)

Dynamic Memory 66.35 0.59

Templates 39.97 0.29

synth1 (3)

Dynamic Memory 31.58 0.47

Templates 17.87 0.22

synth2 (5)

Dynamic Memory 582.72 2.49

Templates 358.69 1.22

Table 4: Execution times and memory usage for dynamic memory allocation vs templates

5.4. Optimizations Overview
Tables 5 and 6 present the impact of the proposed optimizations (multi-

index data structure and templates) as well as multithreading for the 3pmg
and synth5 sequence sets, in Machine2 with hyperthreading (HT) enabled.

Data Structure Technique Threads Time (s) RAM (GB)
Dictionary Dynamic Mem. 1 75.20 0.73
Multi-Index Dynamic Mem. 1 66.35 0.59
Multi-Index Template 1 39.97 0.29
Multi-Index Template 2 20.03 0.29
Multi-Index Template 4 10.88 0.31
Multi-Index Template 4+4HT 07.23 0.32

Table 5: Impact of the proposed optimizations and multithreading for 3pmg

In the 3mpg comparison, the use of multi-index and templates reduced
the elapsed time 1.88⇥. With 8 threads, the time is reduced from 39.97s to
7.23s (5.52⇥). With the optimizations and multithreading, the total time is
reduced from 75.20s to 7.23s, with a total 10.40⇥ speedup using the opti-
mizations and 4-HT cores.

In the synth2 comparison, we observed the same behavior, with a speedup
of time 1.63⇥ when the optimizations multi-index and templates are applied.
With multithreading, the execution time is reduced from 358.69s (1 thread)
to 74.94s (8 threads), with a speedup of 4.78⇥. Applying the optimizations
and multithreading, PA-Star was able to reduce the execution time from
585.21 to 74.94, achieving a speedup of 7.80⇥.

There was also a great reduction in the use of memory with the use of the
proposed optimizations: 2.51⇥ and 2.26⇥ for the execution with sets 3pmg

20

Starting pairwise alignments... done!
Phase 1 - init heuristic: 00:00.001 s
Performing search with Parallel A-Star.
Running PAStar with: 1 threads, Full-Zorder hash, 12 shift.
Phase 2: PA-Star running time: 04:23.186 s
Final Score: (18 18 18 18 18 18 17 18 17 18 18 17 18 18 18 18 18 18 18 18
18 18) g - 59579 (h - 0 f - 59579)
Similarity: 59.16%

EEIDPETIKVEVGSDDED
EEIEPEVIRVELGSDEED
EELEPETIPVEIESDEDE
EELDPETIPVDIESDEED
QELDPETTEMELESDEEE
EDLDPETIPVELESDEEE
E-LQPETIPVEVESDDEH
TELEPETIPVELESDDED
E-LEPETIPVEIGSDDEE
EQLKPETIPVEIGSDDEP
EPVEPETIPVEVGSDEEE
G-LQPETIPVEVGSDEDE
QHLQPEHIPVEVGSDDEE
EPLQPERIPVELGSDEEE
QELEPETITVELSSDEEV
EELEPEIFELEISSDSDM
EPLEPETIQVEISSDDED
EHTKPETITVEISSDEEP
EPTEPETITVDLLSSHDE
EPTEPETITVEIESDDDE
EDLDPETIHFEVSSDDEE
FTLQPETIHLEISSDEEE
Phase 3 - backtrace: 00:00.000 s

Figure 6: Output produced by PA-Star for the PF07780 sequence set

and synth2, respectively. With multithreading, as expected, memory usage
slightly increases due to synchronization data.

5.5. Hash Function Comparison

Three factors are used to decide in which OpenList queue the node should
be written (Equations 2 and 3): (a) The hash function, SUM or ZORDER,
(b) S, the constant right-shift factor, and (c) the total number of threads
and regions managed by each thread.

If the hash function always decides that the result of expansion should
be inserted in queues that belong to other threads, then the overhead of
communication is high and the performance is a↵ected. On the other hand,
if the hash function decides that the result of expansion should never be
inserted in other threads queues, then load imbalance is very high and the
execution is almost serialized. In this experiment, we used Machine3 (Table
1) to test di↵erent combinations of hash functions, threads and shift-right
factors.

Figure 9 shows the elapsed time to compare the synth2 set with the
ZORDER (left) and SUM (right) hash functions. It can be seen that the hash
function and the number of bits (shift) has a great impact on performance.

21

Data Structure Technique Threads Time (s) RAM (GB)
Dictionary Dynamic Mem. 1 585.21 3.17
Multi-Index Dynamic Mem. 1 582.72 2.42
Multi-Index Template 1 358.69 1.22
Multi-Index Template 2 191.41 1.24
Multi-Index Template 4 109.48 1.30
Multi-Index Template 4+4HT 74.94 1.40

Table 6: Impact of the proposed optimizations and multithreading for synth2

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 5 10 15 20 25 30 35

Ti
m

e
El

ap
se

d
(s

)

Number of Threads

Sum

shift=4
shift=6
shift=8

(a) SUM

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 5 10 15 20 25 30 35

Ti
m

e
El

ap
se

d
(s

)

Number of Threads

Zorder

shift=4
shift=6
shift=8

shift=12

(b) ZORDER

Figure 7: Hash function SUM and ZORDER for sequence set synth2 in
Machine3 (32 cores)

In the best case, the execution with ZORDER hash has a minimum elapsed
time of 45s (17.9⇥) and the SUM hash 49s (16.2⇥). The graphic also shows
that the ZORDER has more stable results as the shift values are varied, while
the performance with SUM hash quickly degrades for values higher than 4.
In other words, SUM seems to be much less scalable than ZORDER. For both
cases, the number of re-expanded nodes and the overhead of communication
increases with the number of threads. The graph also shows a local minimum
with 4, 8, 16 and 32 threads, because the Equation 2 mod operation is
optimized to a quick shift operation. With these results, we decided to use
as default the ZORDER hash, with 12 as a shift factor.

22

5.6. BAliBASE Comparison

With the ZORDER hash, 12 shift factor and 16 threads, we decided to
run PA-Star for all 82 sequence sets in BAliBASE Reference 1, in Machine3.
In this experiment, we used 16 cores since empirically we noticed that the
execution times for 16 cores were slightly better than the execution times for
32 cores.

Most of the sequence sets of BAliBASE reference set 1 of were quickly
solved. The total time, including backtrace time, of the 76 easiest sequence
set executions was 51 minutes. The PA-Star execution for three hard BAl-
iBASE sequences (1sesA, arp and 1gpb) (Table 2) took almost 4 hours to
finish and 3 executions (1pamA, 1lcf, 1taq) ran out of memory in Machine3
which has 1TB of RAM memory.

Sequences (k) Avg Length Time Size Size
(hh:mm:ss) ClosedList Lists (Total)

1sesA (5) 427.8 00:30:01 368,609,668 455,761,987
arp (5) 397.0 00:56:43 603,275,186 797,852,355
1gpb (5) 809.8 02:39:27 1,615,316,096 2,009,496,349

Table 7: Elapsed time and number of page faults for 3 hard instances of Balibase 1 (16
cores)

Table 7 presents the execution time for the sequence sets 1sesA, arp and
1gpb, which are 3 of the most di�cult BAliBASE reference 1 sequence sets.
In this table, it can be seem that most of the list space of PA-Star is used
with the ClosedList (75.61% and 80.87%) and that the number of nodes in
this list is huge for these sequences (> 300, 000).

5.7. DAPA Results

In order to execute DAPA, we first performed a profiling of the applica-
tion to define the number of threads and the number of regions per thread.
We chose sequences 1gdoA, 1dlc and 1wit and run PA-Star with DAPA en-
abled in Machine1 (Table 1), varying the number of threads from 2 to 8 and
the number of regions per thread from 32 to 1024. In this evaluation, the
threshold was set in a way that disk was not used. The results for these
three sequence sets were quite similar and, for this reason, we only show the
results for sequence 1wit in Figure 8.

23

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

 32 64 128 256 512 1024

ex
ec

ut
io

n
tim

e

regions per thread

2 threads
4 threads
8 threads

Figure 8: Execution times for 2, 4 and 8 threads for the 1wit comparison in
Machine1

As shown in Figure 8, the execution time decreases when we augment the
number of regions up to a certain number of regions and then it increases
again. The lowest execution times for Machine1 were obtained with 8 threads
and 64 regions per thread. Therefore, we chose this configuration to run the
experiment on the impact of the available RAM memory.

In this experiment, we executed PA-Star with DAPA enabled for the 1wit
comparison using 8 threads and 64 regions per thread with decreasing values
of available RAM memory. In all cases, DAPA started to execute when 90%
of the maximum size of the ClosedList was attained. We varied the amount
of RAM memory allocated to the ClosedList from 140 MB to 17.5 MB, as
shown in Table 8. In this table, the execution time and RAM memory were
obtained with the time command. The available memory to the ClosedList
is a parameter of PA-Star and the maximum occupation of the ClosedList
was measured inside PA-Star.

As expected, Table 8 shows that reducing the available memory has a
great impact on the overall execution time. When the whole ClosedList
fits into memory (140MB), no accesses to disk are made and the PA-Star
execution time is 15.16s. However, when the disk is necessary, an overhead
is introduced and the execution times increase.

In the 1wit comparison, when the available memory to the ClosedList

24

Available Memory Execution Max Occupation RAM Memory
ClosedList (MB) Time (s) ClosedList (MB) (MB)

140.0 15.16 70.59 413.46
70.0 32.77 63.30 399.60
56.0 78.07 51.39 379.29
35.0 436.07 39.94 315.95
17.5 790.58 17.6 272.84

Table 8: Impact of the available memory in the execution times

is reduced from 140 MB to 17.5 MB (8⇥), the execution time increases
from 15.16 s to 790.58 s (52⇥). This is indeed a considerable increase in
the execution time but DAPA, in this case, allows PA-Star to complete its
execution and return the optimal result to the user.

When PA-Star is executed with DAPA disabled and there is not enough
RAM memory, the execution would not complete, terminating with a mem-
ory exception. In order to verify this, we compared sequence 1hvA (Table 2)
with and without DAPA enabled. This comparison needs about 10 GB to
complete and the total RAM memory in Machine1 is 8 GB. So, as expected,
the PA-Star execution with DAPA disabled ran out of memory.

In the DAPA-enabled test, we first tried to set the parameters as 8 threads
and 64 regions per thread. However, the execution was very slow so we
empirically augmented the number of regions per thread to 256. With these
parameters, PA-Star took 7 hours, 14 minutes and 27 seconds to align the
sequence set 1hvA, showing that, with DAPA, PA-Star is able to execute
MSAs which require more than the total RAM memory of the machine.

5.8. Comparison with PFA*-DDD

In this test, we used Machine3 to compare our implementation to one of
the state-of-the-art solutions, PFA*-DDD (Section 3). To do this comparison,
the authors kindly provided us the source code. PFA*-DDD requires an MPI
library and in this test we used Intel IMPI version 5.0.1.035. PFA*-DDD
requires multiples of 3 processes to run, while our solution can be executed
with any number of threads.

Figure 9 shows the elapsed time for running the 2ack and glg sequence
sets (Table 1). In this test, the sequences were pruned to have all the same
size. It is possible to notice that our solution always has better execution

25

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 5 10 15 20 25 30 35 40 45 50 55

Ti
m

e
El

ap
se

d
(s

)

Number of Threads or Processes

2ack

P-AStar
PFA*-DDD

(a) 2ack

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 5 10 15 20 25 30 35 40 45 50 55

Ti
m

e
El

ap
se

d
(s

)

Number of Threads or Processes

glg

P-AStar
PFA*-DDD

(b) glg

Figure 9: Comparison between PA-Star and PFA*-DDD in Machine3 (32
cores)

times, and the best result is achieved with 32 threads. PFA*-DDD minimizes
execution time with 48 processes.

Sequence
PA-Star PFA*-DDD
Time (s) Time (s)

2ack 62.64 299.21
glg 30.76 89.15

Table 9: Comparison between our Parallel A-Star strategy (with 32 threads) and PFA*-
DDD (with 48 processes).

Table 9 shows the best running time for both solutions. As can be seen,
PA-Star compares the 2ack instance in 1 minute and 2 seconds whereas
PFA*-DDD takes almost 5 minutes to do the same comparison. For the
glg sequences, PA-Star running time is 0:30.76, while the PFA*-DDD total
executing time is 1:29.15.

5.9. PA-Star-DAPA, PA-Star and PFA*-DDD comparison

In this experiment, we compared PFA*-DDD (Section 3) with PA-Star
without DAPA and PA-Star with DAPA. We used the Machine1, running
PFA*-DDD with Intel IMPI version 5.0.1.

Table 10 compares PA-Star with DAPA, PA-Star without DAPA and
PFA*-DDD, when executing the sequence set synth4. As can be seen, PA-

26

Sequence (k) PA-Star-DAPA (s) PA-Star (s) PFA*-DDD (s)
synth4 (5) 5604 out of memory out of memory

Table 10: Comparison between our Parallel A-Star strategy (with 8 threads), DAPA
(with 4 threads and 256 regions), and PFA*-DDD (with 12 processes).

Star with DAPA is able to generate the optimal alignment for synth4 in 1
hour and 33 minutes whereas PFA*-DDD and PA-Star did not finish the
execution, because there is not enough RAM memory.

In this experiment, the PA-Star created 8 threads and run out of memory
in 8 minutes. PFA*-DDD created 12 processes and ran out of memory after
42 minutes and 49 seconds. PA-Star with DAPA created 4 threads and 256
regions per thread, with the available RAM memory to the ClosedList set
to 1.5 GB. This test shows that DAPA is able to execute alignments which
require more than the total available RAM memory required while other two
solutions terminate with memory exception.

6. Conclusion and Future Work

In this paper, we proposed and evaluated PA-Star, a parallel solution
which is able to retrieve optimal MSAs in multiple cores. We proposed many
optimizations such as the usage of a multi-index data structure, templates
and a locality-sensitive hash function. In PA-Star parallel execution, we also
proposed to execute part of the synchronization among the threads asyn-
chronously, accelerating the execution.

The results obtained with the sequence sets from the BAliBASE reference
set 1 shows that PA-Star is able to reduce the elapsed time from 75.20s to
7.23s, by adding the multi-index data structure, templates and parallel exe-
cution using 8 cores. Using PA-Star, we were able to compare 79 BAliBASE
sequence sets out of 82 in 4 hours and 56 minutes, producing the optimal
results for all these sets. We also showed that PA-Star outperforms with
the state-of-the-art tool PFA*-DDD, executing up to 4.77⇥ faster. Finally,
we showed that our disk-assisted strategy DAPA is able to retrieve optimal
alignments when PFA*-DDD and PA-Star without the disk module run out
of memory.

As future work, we intend to extend PA-Star to run in NUMA architec-
tures, modifying the locality-sensitive hash function to take into account the

27

distance between the cores. In addition, we intend to investigate other ad-
missible heuristics, rather than the h

2,all, which is used in PA-Star. We also
want to thoroughly investigate the impact of parameters such as number of
threads, number of regions, hash function, amount of RAM memory, number
of sequences, size of sequences and similarity among the sequences in the
execution times.

Acknowledgment

We would like to thank Prof. Jose Nelson Amaral and Robert Niewiadom-
ski for providing us the PFA*-DDD source code. This work was partially
supported by Capes/Brazil and CNPq/Brazil.

References

[1] R. Durbin, S. R. Eddy, A. Krogh, G. Mitchison, Biological Sequence
Analysis: Probabilistic Models of Proteins and Nucleic Acids, Cam-
bridge Univ. Press, 1999.

[2] L. Wang, T. Jiang, On the complexity of multiple sequence alignment,
Journal of Computational Biology 1 (4) (1994) 337–348.

[3] H. Carrillo, D. Lipman, The multiple sequence alignment problem in
biology, SIAM Journal of Applied Mathematics 48 (1988) 1073–1082.
doi:10.1137/0148063.

[4] P. Hart, N. Nilsson, B. Raphael, A formal basis for the heuristic deter-
mination of minimum cost paths, IEEE Trans Sys Sci and Cybernetics
SSC-4(2) (1968) 100–107.

[5] J. L. Spouge, Speeding up dynamic-programming algorithms for finding
optimal lattice paths, SIAM J. Applied Mathematics 49 (5) (1989) 1552–
1566.

[6] K. R. K., J. S. J., T. Will, Combining divide-and-conquer, the a-
algorithm, and successive realignment approaches to speed multiple se-
quence alignment., in: German Conference on Bioinformatics, 1999, pp.
17–24.

28

[7] M. Lermen, K. Reinert, The practical use of the A* algorithm for exact
multiple sequence alignment, Journal of Computational Biology 7 (2000)
655–673.

[8] R. Niewiadomski, J. N. Amaral, R. Holte, Sequential and parallel al-
gorithms for frontier A* with delayed duplicate detection, in: Proc. of
AAAI, 2006, pp. 1039–1044.

[9] M. Hatem, W. Ruml, External memory best-first search for multiple
sequence alignment, in: Proceedings of the Twenty-Seventh AAAI Con-
ference on Artificial Intelligence, 2013, pp. 409–416.

[10] D. W. Mount, Bioinformatics: Sequence and Genome Analysis, 1st Edi-
tion, Cold Spring Harbor Laboratory Press, 2001.

[11] M. O. Dayho↵, R. M. Schwartz, B. C. Orcutt, A model of evolutionary
change in proteins, Atlas of Protein Sequence and Structure 5 (suppl 3)
(1978) 345–351.

[12] S. Needleman, C. Wunsch, A general method applicable to the search
for similarities in the amino acid sequence of two proteins., Journal of
Molecular Biology (1970) 443–453.

[13] H. Kobayashi, H. Imai, Improvement of the A* algorithm for multiple
sequence alignment, in: Proceedings of the 9th Workshop on Genome
Informatics, 1998, pp. 120–130.

[14] R. Zhou, E. A. Hansen, Sweep A*: Space-e�cient heuristic search in par-
tially ordered graphs, in: In Proceedings of the 15th IEEE International
Conference on Tools with Artificial Intelligence, 2003, pp. 427–434.

[15] T. Yoshizumi, T. Miura, T. Ishida, A* with partial expansion for large
branching factor problems, in: Proceedings of the American Association
for Artificial Intelligence (AAAI/IAAI), 2000, pp. 923–929.

[16] R. E. Korf, Linear-time disk-based implicit graph search, Journal of the
ACM 55 (6) (2008) 1–26.

[17] J. D. Thompson, F. Plewniak, O. Poch, BAliBASE: a benchmark align-
ment database for the evaluation of multiple alignment programs., Bioin-
formatics 15 (1) (1999) 87–88.

29

[18] R. E. Korf, Delayed duplicate detection: Extended abstract., in: IJCAI,
2003, pp. 1539–1541.

[19] R. E. Korf, P. Schultze, Large-scale parallel breadth-first search, in:
Proceedings of the 20th National Conference on Artificial Intelligence -
Volume 3, AAAI’05, AAAI Press, 2005, pp. 1380–1385.

[20] Morton, A computer oriented geodetic data base and a new technique
in file sequencing, Tech. rep., IBM Ltd. (1966).

[21] D. R. Musser, G. J. Derge, A. Saini, STL Tutorial and Reference Guide:
C++ Programming with the Standard Template Library, Addison-
Wesley Professional, 2001.

[22] D. Sundfeld, A. C. M. A. de Melo, MSA-GPU: exact multiple sequence
alignment using GPU., in: J. C. Setubal, N. F. Almeida (Eds.), BSB,
Vol. 8213 of Lecture Notes in Computer Science, Springer, 2013, pp.
47–58.

30

View publication statsView publication stats

https://www.researchgate.net/publication/317246144

